Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; 52(2): 312-327, 2022 02.
Article in English | MEDLINE | ID: mdl-34752634

ABSTRACT

Overwhelming activation of T cells in acute malaria is associated with severe outcomes. Thus, counter-regulation by anti-inflammatory mechanisms is indispensable for an optimal resolution of disease. Using Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice, we performed a comprehensive analysis of co-inhibitory molecules expressed on CD4+ and CD8+ T cells using an unbiased cluster analysis approach. We identified similar T cell clusters co-expressing several co-inhibitory molecules like programmed cell death protein 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) in the CD4+ and the CD8+ T cell compartment. Interestingly, despite expressing co-inhibitory molecules, which are associated with T cell exhaustion in chronic settings, these T cells were more functional compared to activated T cells that were negative for co-inhibitory molecules. However, T cells expressing high levels of PD-1 and LAG-3 also conferred suppressive capacity and thus resembled type I regulatory T cells. To our knowledge, this is the first description of malaria-induced CD8+ T cells with suppressive capacity. Importantly, we found an induction of T cells with a similar co-inhibitory rich phenotype in Plasmodium falciparum-infected patients. In conclusion, we demonstrate that malaria-induced T cells expressing co-inhibitory molecules are not exhausted, but acquire additional suppressive capacity, which might represent an immune regulatory pathway to prevent further activation of T cells during acute malaria.


Subject(s)
Antigens, CD/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Gene Expression Regulation/immunology , Immune Tolerance , Malaria, Falciparum/immunology , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Programmed Cell Death 1 Receptor/immunology , Adolescent , Adult , Animals , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Lymphocyte Activation Gene 3 Protein
2.
Sci Signal ; 11(561)2018 12 18.
Article in English | MEDLINE | ID: mdl-30563862

ABSTRACT

The earliest intracellular signals that occur after T cell activation are local, subsecond Ca2+ microdomains. Here, we identified a Ca2+ entry component involved in Ca2+ microdomain formation in both unstimulated and stimulated T cells. In unstimulated T cells, spontaneously generated small Ca2+ microdomains required ORAI1, STIM1, and STIM2. Super-resolution microscopy of unstimulated T cells identified a circular subplasmalemmal region with a diameter of about 300 nm with preformed patches of colocalized ORAI1, ryanodine receptors (RYRs), and STIM1. Preformed complexes of STIM1 and ORAI1 in unstimulated cells were confirmed by coimmunoprecipitation and Förster resonance energy transfer studies. Furthermore, within the first second after T cell receptor (TCR) stimulation, the number of Ca2+ microdomains increased in the subplasmalemmal space, an effect that required ORAI1, STIM2, RYR1, and the Ca2+ mobilizing second messenger NAADP (nicotinic acid adenine dinucleotide phosphate). These results indicate that preformed clusters of STIM and ORAI1 enable local Ca2+ entry events in unstimulated cells. Upon TCR activation, NAADP-evoked Ca2+ release through RYR1, in coordination with Ca2+ entry through ORAI1 and STIM, rapidly increases the number of Ca2+ microdomains, thereby initiating spread of Ca2+ signals deeper into the cytoplasm to promote full T cell activation.


Subject(s)
Calcium/metabolism , Lymphocyte Activation , ORAI1 Protein/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/metabolism , T-Lymphocytes/cytology , Animals , Calcium Signaling , Cell Membrane , Cells, Cultured , Female , Fluorescence Resonance Energy Transfer , Male , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...