Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 1263, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894535

ABSTRACT

Stereocontrolled Csp3 cross-coupling can fundamentally change the types of chemical structures that can be mined for molecular functions. Although considerable progress in achieving the targeted chemical reactivity has been made, controlling stereochemistry in Csp3 cross-coupling remains challenging. Here we report that ligand-based axial shielding of Pd(II) complexes enables Suzuki-Miyaura cross-coupling of unactivated Csp3 boronic acids with perfect stereoretention. This approach leverages key differences in spatial orientation between competing pathways for stereoretentive and stereoinvertive transmetalation of Csp3 boronic acids to Pd(II). We show that axial shielding enables perfectly stereoretentive cross-coupling with a range of unactivated secondary Csp3 boronic acids, as well as the stereocontrolled synthesis of xylarinic acid B and all of its Csp3 stereoisomers. We expect these ligand design principles will broadly enable the continued search for practical and effective methods for stereospecific Csp3 cross-coupling.


Subject(s)
Boronic Acids/chemical synthesis , Chemistry Techniques, Synthetic , Fatty Acids, Monounsaturated/chemical synthesis , Palladium/chemistry , Catalysis , Humans , Ligands , Molecular Structure , Stereoisomerism
2.
Nat Rev Chem ; 2(2)2018 Feb.
Article in English | MEDLINE | ID: mdl-29696152

ABSTRACT

Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the "building block approach", i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach.

3.
Science ; 347(6227): 1221-6, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25766227

ABSTRACT

Small-molecule synthesis usually relies on procedures that are highly customized for each target. A broadly applicable automated process could greatly increase the accessibility of this class of compounds to enable investigations of their practical potential. Here we report the synthesis of 14 distinct classes of small molecules using the same fully automated process. This was achieved by strategically expanding the scope of a building block-based synthesis platform to include even C(sp3)-rich polycyclic natural product frameworks and discovering a catch-and-release chromatographic purification protocol applicable to all of the corresponding intermediates. With thousands of compatible building blocks already commercially available, many small molecules are now accessible with this platform. More broadly, these findings illuminate an actionable roadmap to a more general and automated approach for small-molecule synthesis.


Subject(s)
Chemistry Techniques, Synthetic/methods , Organic Chemicals/chemical synthesis , Automation , Boronic Acids/chemistry , Chemistry Techniques, Synthetic/instrumentation , Cyclization , Molecular Structure , Organic Chemicals/chemistry , Organic Chemicals/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...