Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 61(6): 1545-1551, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35201044

ABSTRACT

In the framework of high-power lasers, surface defects on optics can generate strong light intensification and induce damage sites on downstream optics. To evaluate this intensification during high-energy laser shots, a three-step method is proposed. First, a dedicated measurement bench is designed to measure the intensification induced by defects on a wide variety of optics, including amplifier slabs, KDP crystals, mirrors, gratings, and vacuum windows, for propagation distances up to 2000 mm. A multi-resolution single-beam multiple-intensity reconstruction phase retrieval algorithm is then used to reconstruct a model of the defect, in both amplitude and phase, from a set of intensification measurements. Finally, the impact of the modeled defect on downstream optics is evaluated with a simulation of the high-power laser system. This method is experimentally validated through a case study of damage identified on one of the Laser Mégajoule (LMJ) beams, characterized with the method presented in this paper. The long-distance impact on the LMJ beam is estimated by simulation and compared to a direct near-field measurement.

2.
Opt Express ; 27(14): 19233-19241, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31503686

ABSTRACT

In this paper we describe an upconversion detector in the mid infrared (around 3.5 µm). We take advantage of the PPLN ridge waveguide technology to achieve single photon detection at room temperature on a single spatial mode. With a pump power of 192 mW we obtain a detection efficiency of 0.4% for 22k dark count per second, which corresponds to a noise equivalent power of 3.0 fW · Hz-1/2 and an internal conversion efficiency of 85 %/W of pump.

SELECTION OF CITATIONS
SEARCH DETAIL
...