Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 41(4): 111536, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36288698

ABSTRACT

The "last resort" pathway results in ubiquitylation and degradation of RNA polymerase II in response to transcription stress and is governed by factors such as Def1 in yeast. Here, we show that the SMY2 gene acts as a multi-copy suppressor of DEF1 deletion and functions at multiple steps of the last resort pathway. We also provide genetic and biochemical evidence from disparate cellular processes that Smy2 works more broadly as a hitherto overlooked regulator of Cdc48 function. Similarly, the Smy2 homologs GIGYF1 and -2 affect the transcription stress response in human cells and regulate the function of the Cdc48 homolog VCP/p97, presently being explored as a target for cancer therapy. Indeed, we show that the apoptosis-inducing effect of VCP inhibitors NMS-873 and CB-5083 is GIGYF1/2 dependent.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Adenosine Triphosphatases/metabolism , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism
2.
DNA Repair (Amst) ; 115: 103343, 2022 07.
Article in English | MEDLINE | ID: mdl-35633597

ABSTRACT

During transcription, RNA polymerase II (RNAPII) faces numerous obstacles, including DNA damage, which can lead to stalling or arrest. One mechanism to contend with this situation is ubiquitylation and degradation of the largest RNAPII subunit, RPB1 - the 'last resort' pathway. This conserved, multi-step pathway was first identified in yeast, and the functional human orthologues of all but one protein, RNAPII Degradation Factor 1 (Def1), have been discovered. Here we show that following UV-irradiation, human Ubiquitin-associated protein 2 (UBAP2) or its paralogue UBAP2-like (UBAP2L) are involved in the ubiquitylation and degradation of RNAPII through the recruitment of Elongin-Cul5 ubiquitin ligase. Together, our data indicate that UBAP2 and UBAP2L are the human orthologues of yeast Def1, and so identify the key missing proteins in the human last resort pathway.


Subject(s)
RNA Polymerase II , Saccharomyces cerevisiae Proteins , Humans , Carrier Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cullin Proteins/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitination , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...