Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Nat Commun ; 15(1): 3837, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714665

ABSTRACT

Although metabolic reprogramming within tumor cells and tumor microenvironment (TME) is well described in breast cancer, little is known about how the interplay of immune state and cancer metabolism evolves during treatment. Here, we characterize the immunometabolic profiles of tumor tissue samples longitudinally collected from individuals with breast cancer before, during and after neoadjuvant chemotherapy (NAC) using proteomics, genomics and histopathology. We show that the pre-, on-treatment and dynamic changes of the immune state, tumor metabolic proteins and tumor cell gene expression profiling-based metabolic phenotype are associated with treatment response. Single-cell/nucleus RNA sequencing revealed distinct tumor and immune cell states in metabolism between cold and hot tumors. Potential drivers of NAC based on above analyses were validated in vitro. In summary, the study shows that the interaction of tumor-intrinsic metabolic states and TME is associated with treatment outcome, supporting the concept of targeting tumor metabolism for immunoregulation.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Tumor Microenvironment , Humans , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Longitudinal Studies , Middle Aged , Proteomics , Adult , Cell Line, Tumor , Single-Cell Analysis
2.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38774451

ABSTRACT

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Subject(s)
Lymphoma, Mantle-Cell , SAM Domain and HD Domain-Containing Protein 1 , SOXC Transcription Factors , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Humans , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Animals , Mice , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Protein Binding , Cell Line, Tumor , Cytarabine/pharmacology
3.
J Intern Med ; 295(6): 785-803, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698538

ABSTRACT

In the last decades, the development of high-throughput molecular assays has revolutionised cancer diagnostics, paving the way for the concept of personalised cancer medicine. This progress has been driven by the introduction of such technologies through biomarker-driven oncology trials. In this review, strengths and limitations of various state-of-the-art sequencing technologies, including gene panel sequencing (DNA and RNA), whole-exome/whole-genome sequencing and whole-transcriptome sequencing, are explored, focusing on their ability to identify clinically relevant biomarkers with diagnostic, prognostic and/or predictive impact. This includes the need to assess complex biomarkers, for example microsatellite instability, tumour mutation burden and homologous recombination deficiency, to identify patients suitable for specific therapies, including immunotherapy. Furthermore, the crucial role of biomarker analysis and multidisciplinary molecular tumour boards in selecting patients for trial inclusion is discussed in relation to various trial concepts, including drug repurposing. Recognising that today's exploratory techniques will evolve into tomorrow's routine diagnostics and clinical study inclusion assays, the importance of emerging technologies for multimodal diagnostics, such as proteomics and in vivo drug sensitivity testing, is also discussed. In addition, key regulatory aspects and the importance of patient engagement in all phases of a clinical trial are described. Finally, we propose a set of recommendations for consideration when planning a new precision cancer medicine trial.


Subject(s)
Biomarkers, Tumor , Neoplasms , Precision Medicine , Humans , Precision Medicine/methods , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/diagnosis , Neoplasms/drug therapy , High-Throughput Nucleotide Sequencing , Clinical Trials as Topic , Medical Oncology/methods , Medical Oncology/trends
4.
NPJ Precis Oncol ; 8(1): 38, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374206

ABSTRACT

Consistent handling of samples is crucial for achieving reproducible molecular and functional testing results in translational research. Here, we used 229 acute myeloid leukemia (AML) patient samples to assess the impact of sample handling on high-throughput functional drug testing, mass spectrometry-based proteomics, and flow cytometry. Our data revealed novel and previously described changes in cell phenotype and drug response dependent on sample biobanking. Specifically, myeloid cells with a CD117 (c-KIT) positive phenotype decreased after biobanking, potentially distorting cell population representations and affecting drugs targeting these cells. Additionally, highly granular AML cell numbers decreased after freezing. Secondly, protein expression levels, as well as sensitivity to drugs targeting cell proliferation, metabolism, tyrosine kinases (e.g., JAK, KIT, FLT3), and BH3 mimetics were notably affected by biobanking. Moreover, drug response profiles of paired fresh and frozen samples showed that freezing samples can lead to systematic errors in drug sensitivity scores. While a high correlation between fresh and frozen for the entire drug library was observed, freezing cells had a considerable impact at an individual level, which could influence outcomes in translational studies. Our study highlights conditions where standardization is needed to improve reproducibility, and where validation of data generated from biobanked cohorts may be particularly important.

5.
Blood ; 143(19): 1953-1964, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38237141

ABSTRACT

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Subject(s)
Lymphoma, Mantle-Cell , SAM Domain and HD Domain-Containing Protein 1 , SOXC Transcription Factors , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Humans , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Animals , Mice , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Protein Binding , Cell Line, Tumor , Cytarabine/pharmacology
6.
Sci Adv ; 9(48): eadg8014, 2023 12.
Article in English | MEDLINE | ID: mdl-38039364

ABSTRACT

To study and then harness the tumor-specific T cell dynamics after allogeneic hematopoietic stem cell transplant, we typed the frequency, phenotype, and function of lymphocytes directed against tumor-associated antigens (TAAs) in 39 consecutive transplanted patients, for 1 year after transplant. We showed that TAA-specific T cells circulated in 90% of patients but display a limited effector function associated to an exhaustion phenotype, particularly in the subgroup of patients deemed to relapse, where exhausted stem cell memory T cells accumulated. Accordingly, cancer-specific cytolytic functions were relevant only when the TAA-specific T cell receptors (TCRs) were transferred into healthy, genome-edited T cells. We then exploited trogocytosis and ligandome-on-chip technology to unveil the specificities of tumor-specific TCRs retrieved from the exhausted T cell pool. Overall, we showed that harnessing circulating TAA-specific and exhausted T cells allow to isolate TCRs against TAAs and previously not described acute myeloid leukemia antigens, potentially relevant for T cell-based cancer immunotherapy.


Subject(s)
Leukemia, Myeloid, Acute , T-Cell Exhaustion , Humans , Trogocytosis , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , Antigens, Neoplasm , Leukemia, Myeloid, Acute/therapy
7.
Nat Commun ; 14(1): 7056, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923723

ABSTRACT

Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. As the available therapeutic options show a lack of efficacy, novel therapeutic strategies are urgently needed. Given its T-cell infiltration, we hypothesized that MPM is a suitable target for therapeutic cancer vaccination. To date, research on mesothelioma has focused on the identification of molecular signatures to better classify and characterize the disease, and little is known about therapeutic targets that engage cytotoxic (CD8+) T cells. In this study we investigate the immunopeptidomic antigen-presented landscape of MPM in both murine (AB12 cell line) and human cell lines (H28, MSTO-211H, H2452, and JL1), as well as in patients' primary tumors. Applying state-of-the-art immuno-affinity purification methodologies, we identify MHC I-restricted peptides presented on the surface of malignant cells. We characterize in vitro the immunogenicity profile of the eluted peptides using T cells from human healthy donors and cancer patients. Furthermore, we use the most promising peptides to formulate an oncolytic virus-based precision immunotherapy (PeptiCRAd) and test its efficacy in a mouse model of mesothelioma in female mice. Overall, we demonstrate that the use of immunopeptidomic analysis in combination with oncolytic immunotherapy represents a feasible and effective strategy to tackle untreatable tumors.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Female , Animals , Mice , Pleural Neoplasms/drug therapy , Mesothelioma/drug therapy , Immunotherapy , Peptides/therapeutic use , Cell Line, Tumor , Lung Neoplasms/pathology
8.
Nat Commun ; 14(1): 5921, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739942

ABSTRACT

COVID-19 is characterised by systemic immunological perturbations in the human body, which can lead to multi-organ damage. Many of these processes are considered to be mediated by the blood. Therefore, to better understand the systemic host response to SARS-CoV-2 infection, we performed systematic analyses of the circulating, soluble proteins in the blood through global proteomics by mass-spectrometry (MS) proteomics. Here, we show that a large part of the soluble blood proteome is altered in COVID-19, among them elevated levels of interferon-induced and proteasomal proteins. Some proteins that have alternating levels in human cells after a SARS-CoV-2 infection in vitro and in different organs of COVID-19 patients are deregulated in the blood, suggesting shared infection-related changes.The availability of different public proteomic resources on soluble blood proteome alterations leaves uncertainty about the change of a given protein during COVID-19. Hence, we performed a systematic review and meta-analysis of MS global proteomics studies of soluble blood proteomes, including up to 1706 individuals (1039 COVID-19 patients), to provide concluding estimates for the alteration of 1517 soluble blood proteins in COVID-19. Finally, based on the meta-analysis we developed CoViMAPP, an open-access resource for effect sizes of alterations and diagnostic potential of soluble blood proteins in COVID-19, which is publicly available for the research, clinical, and academic community.


Subject(s)
COVID-19 , Humans , Proteome , Proteomics , SARS-CoV-2 , Cytoplasm
9.
Mol Cell ; 83(20): 3720-3739.e8, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37591242

ABSTRACT

Fanconi anemia (FA) signaling, a key genomic maintenance pathway, is activated in response to replication stress. Here, we report that phosphorylation of the pivotal pathway protein FANCD2 by CHK1 triggers its FBXL12-dependent proteasomal degradation, facilitating FANCD2 clearance at stalled replication forks. This promotes efficient DNA replication under conditions of CYCLIN E- and drug-induced replication stress. Reconstituting FANCD2-deficient fibroblasts with phosphodegron mutants failed to re-establish fork progression. In the absence of FBXL12, FANCD2 becomes trapped on chromatin, leading to replication stress and excessive DNA damage. In human cancers, FBXL12, CYCLIN E, and FA signaling are positively correlated, and FBXL12 upregulation is linked to reduced survival in patients with high CYCLIN E-expressing breast tumors. Finally, depletion of FBXL12 exacerbated oncogene-induced replication stress and sensitized cancer cells to drug-induced replication stress by WEE1 inhibition. Collectively, our results indicate that FBXL12 constitutes a vulnerability and a potential therapeutic target in CYCLIN E-overexpressing cancers.


Subject(s)
Fanconi Anemia , Neoplasms , Humans , Cell Survival/genetics , Chromatin/genetics , Cyclin E/genetics , Cyclin E/metabolism , DNA Damage , DNA Repair , DNA Replication/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Neoplasms/genetics
10.
J Intern Med ; 294(4): 455-481, 2023 10.
Article in English | MEDLINE | ID: mdl-37641393

ABSTRACT

Precision cancer medicine is a multidisciplinary team effort that requires involvement and commitment of many stakeholders including the society at large. Building on the success of significant advances in precision therapy for oncological patients over the last two decades, future developments will be significantly shaped by improvements in scalable molecular diagnostics in which increasingly complex multilayered datasets require transformation into clinically useful information guiding patient management at fast turnaround times. Adaptive profiling strategies involving tissue- and liquid-based testing that account for the immense plasticity of cancer during the patient's journey and also include early detection approaches are already finding their way into clinical routine and will become paramount. A second major driver is the development of smart clinical trials and trial concepts which, complemented by real-world evidence, rapidly broaden the spectrum of therapeutic options. Tight coordination with regulatory agencies and health technology assessment bodies is crucial in this context. Multicentric networks operating nationally and internationally are key in implementing precision oncology in clinical practice and support developing and improving the ecosystem and framework needed to turn invocation into benefits for patients. The review provides an overview of the diagnostic tools, innovative clinical studies, and collaborative efforts needed to realize precision cancer medicine.


Subject(s)
Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Ecosystem
11.
NPJ Precis Oncol ; 7(1): 32, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36964195

ABSTRACT

Despite some encouraging successes, predicting the therapy response of acute myeloid leukemia (AML) patients remains highly challenging due to tumor heterogeneity. Here we aim to develop and validate MDREAM, a robust ensemble-based prediction model for drug response in AML based on an integration of omics data, including mutations and gene expression, and large-scale drug testing. Briefly, MDREAM is first trained in the BeatAML cohort (n = 278), and then validated in the BeatAML (n = 183) and two external cohorts, including a Swedish AML cohort (n = 45) and a relapsed/refractory acute leukemia cohort (n = 12). The final prediction is based on 122 ensemble models, each corresponding to a drug. A confidence score metric is used to convey the uncertainty of predictions; among predictions with a confidence score >0.75, the validated proportion of good responders is 77%. The Spearman correlations between the predicted and the observed drug response are 0.68 (95% CI: [0.64, 0.68]) in the BeatAML validation set, -0.49 (95% CI: [-0.53, -0.44]) in the Swedish cohort and 0.59 (95% CI: [0.51, 0.67]) in the relapsed/refractory cohort. A web-based implementation of MDREAM is publicly available at https://www.meb.ki.se/shiny/truvu/MDREAM/ .

12.
Mol Oncol ; 17(2): 238-260, 2023 02.
Article in English | MEDLINE | ID: mdl-36495079

ABSTRACT

Glioblastoma (GBM) cancer stem cells (GSCs) contribute to GBM's origin, recurrence, and resistance to treatment. However, the understanding of how mRNA expression patterns of GBM subtypes are reflected at global proteome level in GSCs is limited. To characterize protein expression in GSCs, we performed in-depth proteogenomic analysis of patient-derived GSCs by RNA-sequencing and mass-spectrometry. We quantified > 10 000 proteins in two independent GSC panels and propose a GSC-associated proteomic signature characterizing two distinct phenotypic conditions; one defined by proteins upregulated in proneural and classical GSCs (GPC-like), and another by proteins upregulated in mesenchymal GSCs (GM-like). The GM-like protein set in GBM tissue was associated with necrosis, recurrence, and worse overall survival. Through proteogenomics, we discovered 252 non-canonical peptides in the GSCs, i.e., protein sequences that are variant or derive from genome regions previously considered non-protein-coding, including variants of the heterogeneous ribonucleoproteins implicated in RNA splicing. In summary, GSCs express two protein sets that have an inverse association with clinical outcomes in GBM. The discovery of non-canonical protein sequences questions existing gene models and pinpoints new protein targets for research in GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/metabolism , Proteomics , Brain Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Cell Line, Tumor
13.
Leukemia ; 37(3): 550-559, 2023 03.
Article in English | MEDLINE | ID: mdl-36572751

ABSTRACT

Despite improvement of current treatment strategies and novel targeted drugs, relapse and treatment resistance largely determine the outcome for acute myeloid leukemia (AML) patients. To identify the underlying molecular characteristics, numerous studies have been aimed to decipher the genomic- and transcriptomic landscape of AML. Nevertheless, further molecular changes allowing malignant cells to escape treatment remain to be elucidated. Mass spectrometry is a powerful tool enabling detailed insights into proteomic changes that could explain AML relapse and resistance. Here, we investigated AML samples from 47 adult and 22 pediatric patients at serial time-points during disease progression using mass spectrometry-based in-depth proteomics. We show that the proteomic profile at relapse is enriched for mitochondrial ribosomal proteins and subunits of the respiratory chain complex, indicative of reprogrammed energy metabolism from diagnosis to relapse. Further, higher levels of granzymes and lower levels of the anti-inflammatory protein CR1/CD35 suggest an inflammatory signature promoting disease progression. Finally, through a proteogenomic approach, we detected novel peptides, which present a promising repertoire in the search for biomarkers and tumor-specific druggable targets. Altogether, this study highlights the importance of proteomic studies in holistic approaches to improve treatment and survival of AML patients.


Subject(s)
Leukemia, Myeloid, Acute , Proteogenomics , Humans , Child , Adult , Proteomics/methods , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Recurrence , Disease Progression
14.
Nat Commun ; 13(1): 6226, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266272

ABSTRACT

Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised clustering of the proteome data reveals six subgroups. Five of these proteomic groups are associated with genetic features, while one group is only detectable at the proteome level. This new group is characterized by accelerated disease progression, high spliceosomal protein abundances associated with aberrant splicing, and low B cell receptor signaling protein abundances (ASB-CLL). Classifiers developed to identify ASB-CLL based on its characteristic proteome or splicing signature in two independent cohorts (n = 165, n = 169) confirm that ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in ASB-CLL is also independent of both TP53- and IGHV mutation status. Our multi-omics analysis refines the classification of CLL and highlights the potential of proteomics to improve cancer patient stratification beyond genetic and transcriptomic profiling.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Proteogenomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Proteomics , Proteome/genetics , Mutation , Receptors, Antigen, B-Cell/metabolism
15.
Nat Protoc ; 17(8): 1832-1867, 2022 08.
Article in English | MEDLINE | ID: mdl-35732783

ABSTRACT

The molecular functions of a protein are defined by its inherent properties in relation to its environment and interaction network. Within a cell, this environment and network are defined by the subcellular location of the protein. Consequently, it is crucial to know the localization of a protein to fully understand its functions. Recently, we have developed a mass spectrometry- (MS) and bioinformatics-based pipeline to generate a proteome-wide resource for protein subcellular localization across multiple human cancer cell lines ( www.subcellbarcode.org ). Here, we present a detailed wet-lab protocol spanning from subcellular fractionation to MS-sample preparation and analysis. A key feature of this protocol is that it includes all generated cell fractions without discarding any material during the fractionation process. We also describe the subsequent quantitative MS-data analysis, machine learning-based classification, differential localization analysis and visualization of the output. For broad applicability, we evaluated the pipeline by using MS data generated by two different peptide pre-fractionation approaches, namely high-resolution isoelectric focusing and high-pH reverse-phase fractionation, as well as direct analysis without pre-fractionation by using long-gradient liquid chromatography-MS. Moreover, an R package covering the dry-lab part of the method was developed and made available through Bioconductor. The method is straightforward and robust, and the entire protocol, from cell harvest to classification output, can be performed within 1-2 weeks. The protocol enables accurate classification of proteins to 15 compartments and 4 neighborhoods, visualization of the output data and differential localization analysis including treatment-induced protein relocalization, condition-dependent localization or cell type-specific localization. The SubCellBarCode package is freely available at https://bioconductor.org/packages/devel/bioc/html/SubCellBarCode.html .


Subject(s)
Proteome , Proteomics , Chromatography, Liquid , Humans , Mass Spectrometry/methods , Proteome/analysis , Proteomics/methods , Workflow
17.
Nat Commun ; 13(1): 1691, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354797

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Although standard-of-care chemotherapeutics are sufficient for most ALL cases, there are subsets of patients with poor response who relapse in disease. The biology underlying differences between subtypes and their response to therapy has only partially been explained by genetic and transcriptomic profiling. Here, we perform comprehensive multi-omic analyses of 49 readily available childhood ALL cell lines, using proteomics, transcriptomics, and pharmacoproteomic characterization. We connect the molecular phenotypes with drug responses to 528 oncology drugs, identifying drug correlations as well as lineage-dependent correlations. We also identify the diacylglycerol-analog bryostatin-1 as a therapeutic candidate in the MEF2D-HNRNPUL1 fusion high-risk subtype, for which this drug activates pro-apoptotic ERK signaling associated with molecular mediators of pre-B cell negative selection. Our data is the foundation for the interactive online Functional Omics Resource of ALL (FORALL) with navigable proteomics, transcriptomics, and drug sensitivity profiles at https://proteomics.se/forall .


Subject(s)
Gene Expression Profiling , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Cell Line , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proteomics , Transcriptome
18.
Elife ; 112022 03 22.
Article in English | MEDLINE | ID: mdl-35314027

ABSTRACT

Besides the isolation and identification of major histocompatibility complex I-restricted peptides from the surface of cancer cells, one of the challenges is eliciting an effective antitumor CD8+ T-cell-mediated response as part of therapeutic cancer vaccine. Therefore, the establishment of a solid pipeline for the downstream selection of clinically relevant peptides and the subsequent creation of therapeutic cancer vaccines are of utmost importance. Indeed, the use of peptides for eliciting specific antitumor adaptive immunity is hindered by two main limitations: the efficient selection of the most optimal candidate peptides and the use of a highly immunogenic platform to combine with the peptides to induce effective tumor-specific adaptive immune responses. Here, we describe for the first time a streamlined pipeline for the generation of personalized cancer vaccines starting from the isolation and selection of the most immunogenic peptide candidates expressed on the tumor cells and ending in the generation of efficient therapeutic oncolytic cancer vaccines. This immunopeptidomics-based pipeline was carefully validated in a murine colon tumor model CT26. Specifically, we used state-of-the-art immunoprecipitation and mass spectrometric methodologies to isolate >8000 peptide targets from the CT26 tumor cell line. The selection of the target candidates was then based on two separate approaches: RNAseq analysis and HEX software. The latter is a tool previously developed by Jacopo, 2020, able to identify tumor antigens similar to pathogen antigens in order to exploit molecular mimicry and tumor pathogen cross-reactive T cells in cancer vaccine development. The generated list of candidates (26 in total) was further tested in a functional characterization assay using interferon-γ enzyme-linked immunospot (ELISpot), reducing the number of candidates to six. These peptides were then tested in our previously described oncolytic cancer vaccine platform PeptiCRAd, a vaccine platform that combines an immunogenic oncolytic adenovirus (OAd) coated with tumor antigen peptides. In our work, PeptiCRAd was successfully used for the treatment of mice bearing CT26, controlling the primary malignant lesion and most importantly a secondary, nontreated, cancer lesion. These results confirmed the feasibility of applying the described pipeline for the selection of peptide candidates and generation of therapeutic oncolytic cancer vaccine, filling a gap in the field of cancer immunotherapy, and paving the way to translate our pipeline into human therapeutic approach.


Subject(s)
Cancer Vaccines , Neoplasms , Adenoviridae , Animals , Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Immunotherapy/methods , Mice , Neoplasms/drug therapy , Peptides
19.
Nat Cancer ; 3(2): 251-261, 2022 02.
Article in English | MEDLINE | ID: mdl-35221333

ABSTRACT

There is a growing need for systems that efficiently support the work of medical teams at the precision-oncology point of care. Here, we present the implementation of the Molecular Tumor Board Portal (MTBP), an academic clinical decision support system developed under the umbrella of Cancer Core Europe that creates a unified legal, scientific and technological platform to share and harness next-generation sequencing data. Automating the interpretation and reporting of sequencing results decrease the need for time-consuming manual procedures that are prone to errors. The adoption of an expert-agreed process to systematically link tumor molecular profiles with clinical actions promotes consistent decision-making and structured data capture across the connected centers. The use of information-rich patient reports with interactive content facilitates collaborative discussion of complex cases during virtual molecular tumor board meetings. Overall, streamlined digital systems like the MTBP are crucial to better address the challenges brought by precision oncology and accelerate the use of emerging biomarkers.


Subject(s)
Decision Support Systems, Clinical , Neoplasms , High-Throughput Nucleotide Sequencing/methods , Humans , Medical Oncology/methods , Neoplasms/diagnosis , Precision Medicine/methods
20.
Cancer Res Commun ; 2(6): 434-446, 2022 06.
Article in English | MEDLINE | ID: mdl-36923555

ABSTRACT

Pancreatic cancer remains a disease with unmet clinical needs and inadequate diagnostic, prognostic, and predictive biomarkers. In-depth characterization of the disease proteome is limited. This study thus aims to define and describe protein networks underlying pancreatic cancer and identify protein centric subtypes with clinical relevance. Mass spectrometry-based proteomics was used to identify and quantify the proteome in tumor tissue, tumor-adjacent tissue, and patient-derived xenografts (PDX)-derived cell lines from patients with pancreatic cancer, and tissues from patients with chronic pancreatitis. We identified, quantified, and characterized 11,634 proteins from 72 pancreatic tissue samples. Network focused analysis of the proteomics data led to identification of a tumor epithelium-specific module and an extracellular matrix (ECM)-associated module that discriminated pancreatic tumor tissue from both tumor adjacent tissue and pancreatitis tissue. On the basis of the ECM module, we defined an ECM-high and an ECM-low subgroup, where the ECM-high subgroup was associated with poor prognosis (median survival months: 15.3 vs. 22.9 months; log-rank test, P = 0.02). The ECM-high tumors were characterized by elevated epithelial-mesenchymal transition and glycolytic activities, and low oxidative phosphorylation, E2F, and DNA repair pathway activities. This study offers novel insights into the protein network underlying pancreatic cancer opening up for proteome precision medicine development. Significance: Pancreatic cancer lacks reliable biomarkers for prognostication and treatment of patients. We analyzed the proteome of pancreatic tumors, nonmalignant tissues of the pancreas and PDX-derived cell lines, and identified proteins that discriminate between patients with good and poor survival. The proteomics data also unraveled potential novel drug targets.


Subject(s)
Pancreatic Neoplasms , Proteome , Humans , Proteome/genetics , Pancreatic Neoplasms/genetics , Pancreas/metabolism , Extracellular Matrix/metabolism , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...