Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190513, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32892733

ABSTRACT

During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Subject(s)
Atmosphere/analysis , Carbon Cycle , Carbon Dioxide/analysis , Droughts , Ecosystem , Europe
2.
Sci Rep ; 8(1): 3053, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29445182

ABSTRACT

Secondary organic aerosol (SOA) impact climate by scattering and absorbing radiation and contributing to cloud formation. SOA models are based on studies of simplified chemical systems that do not account for the chemical complexity in the atmosphere. This study investigated SOA formation from a mixture of real Scots pine (Pinus sylvestris) emissions including a variety of monoterpenes and sesquiterpenes. SOA generation was characterized from different combinations of volatile compounds as the plant emissions were altered with an herbivore stress treatment. During active herbivore feeding, monoterpene and sesquiterpene emissions increased, but SOA mass yields decreased after accounting for absorption effects. SOA mass yields were controlled by sesquiterpene emissions in healthy plants. In contrast, SOA mass yields from stressed plant emissions were controlled by the specific blend of monoterpene emissions. Conservative estimates using a box model approach showed a 1.5- to 2.3-fold aerosol enhancement when the terpene complexity was taken into account. This enhancement was relative to the commonly used model monoterpene, "α-pinene". These results suggest that simplifying terpene complexity in SOA models could lead to underpredictions in aerosol mass loading.


Subject(s)
Pinus sylvestris/chemistry , Pinus sylvestris/metabolism , Terpenes/chemistry , Aerosols/analysis , Air Pollutants/analysis , Atmosphere , Climate , Monoterpenes/analysis , Monoterpenes/chemistry , Ozone/chemistry , Pinus/chemistry , Pinus/metabolism , Sesquiterpenes/analysis , Sesquiterpenes/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
3.
Sci Total Environ ; 347(1-3): 131-47, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16084974

ABSTRACT

Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.


Subject(s)
Aerosols/analysis , Air Pollution, Indoor , Cooking , Dust/analysis , Carbon Monoxide/analysis , Cities , Environmental Monitoring , Housing , India , Kerosene , Particle Size , Petroleum , Seasons , Time Factors
4.
Environ Sci Technol ; 37(15): 3392-8, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12966986

ABSTRACT

Particles formed in the automobile exhaust might form a significant fraction of fine particles in urban air. We have developed a model and produced parametrizations for predicting the particle formation rate at exhaust conditions. We studied the formation in the mixture of water and sulfuric acid vapors and at temperatures between 300 and 400 K. A thermodynamically consistent version of the classical binary homogeneous nucleation model was used. The needed thermodynamical input data (vapor pressures, chemical activities, surface tensions, densities) are carefully investigated and utilized in thermodynamically consistent way. The obtained nucleation rates are parametrized in order to be able to use this nucleation model in aerosol dynamic models, exhaust models, or other process models. The parametrization reduces computational time at least by a factor of 500.


Subject(s)
Air Pollutants/analysis , Models, Theoretical , Sulfuric Acids/chemistry , Vehicle Emissions , Temperature , Thermodynamics , Volatilization , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...