Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Acta Physiol (Oxf) ; 223(3): e13038, 2018 07.
Article in English | MEDLINE | ID: mdl-29352512

ABSTRACT

AIM: Thermoregulatory side effects hinder the development of transient receptor potential vanilloid-1 (TRPV1) antagonists as new painkillers. While many antagonists cause hyperthermia, a well-studied effect, some cause hypothermia. The mechanisms of this hypothermia are unknown and were studied herein. METHODS: Two hypothermia-inducing TRPV1 antagonists, the newly synthesized A-1165901 and the known AMG7905, were used in physiological experiments in rats and mice. Their pharmacological profiles against rat TRPV1 were studied in vitro. RESULTS: Administered peripherally, A-1165901 caused hypothermia in rats by either triggering tail-skin vasodilation (at thermoneutrality) or inhibiting thermogenesis (in the cold). A-1165901-induced hypothermia did not occur in rats with desensitized (by an intraperitoneal dose of the TRPV1 agonist resiniferatoxin) sensory abdominal nerves. The hypothermic responses to A-1165901 and AMG7905 (administered intragastrically or intraperitoneally) were absent in Trpv1-/- mice, even though both compounds evoked pronounced hypothermia in Trpv1+/+ mice. In vitro, both A-1165901 and AMG7905 potently potentiated TRPV1 activation by protons, while potently blocking channel activation by capsaicin. CONCLUSION: TRPV1 antagonists cause hypothermia by an on-target action: on TRPV1 channels on abdominal sensory nerves. These channels are tonically activated by protons and drive the reflectory inhibition of thermogenesis and tail-skin vasoconstriction. Those TRPV1 antagonists that cause hypothermia further inhibit these cold defences, thus decreasing body temperature. SIGNIFICANCE: TRPV1 antagonists (of capsaicin activation) are highly unusual in that they can cause both hyper- and hypothermia by modulating the same mechanism. For drug development, this means that both side effects can be dealt with simultaneously, by minimizing these compounds' interference with TRPV1 activation by protons.


Subject(s)
Analgesics/pharmacology , Hypothermia/chemically induced , TRPV Cation Channels/antagonists & inhibitors , Analgesics/chemical synthesis , Animals , Capsaicin , Drug Development , Hypothermia/metabolism , Male , Mice , Protons , Rats, Sprague-Dawley , Rats, Wistar , TRPV Cation Channels/metabolism , Thermogenesis/drug effects , Vasodilation/drug effects
3.
Br J Pharmacol ; 149(6): 761-74, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17016515

ABSTRACT

BACKGROUND AND PURPOSE: To further assess the clinical potential of the blockade of metabotropic glutamate receptors (mGluR1) for the treatment of pain. EXPERIMENTAL APPROACH: We characterized the effects of A-841720, a novel, potent and non-competitive mGluR1 antagonist in models of pain and of motor and cognitive function. KEY RESULTS: At recombinant human and native rat mGluR1 receptors, A-841720 inhibited agonist-induced calcium mobilization, with IC50 values of 10.7+/-3.9 and 1.0 +/- 0.2 nM, respectively, while showing selectivity over other mGluR receptors, in addition to other neurotransmitter receptors, ion channels, and transporters. Intraperitoneal injection of A-841720 potently reduced complete Freund's adjuvant-induced inflammatory pain (ED50 = 23 micromol kg(-1)) and monoiodoacetate-induced joint pain (ED50 = 43 micromol kg(-1)). A-841720 also decreased mechanical allodynia observed in both the sciatic nerve chronic constriction injury and L5-L6 spinal nerve ligation (SNL) models of neuropathic pain (ED50 = 28 and 27 micromol kg(-1), respectively). Electrophysiological studies demonstrated that systemic administration of A-841720 in SNL animals significantly reduced evoked firing in spinal wide dynamic range neurons. Significant motor side effects were observed at analgesic doses and A-841720 also impaired cognitive function in the Y-maze and the Water Maze tests. CONCLUSIONS AND IMPLICATIONS: The analgesic effects of a selective mGluR1 receptor antagonist are associated with motor and cognitive side effects. The lack of separation between efficacy and side effects in pre-clinical models indicates that mGluR1 antagonism may not provide an adequate therapeutic window for the development of such antagonists as novel analgesic agents in humans.


Subject(s)
Analgesia , Cognition/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Motor Activity/drug effects , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Animals , Cells, Cultured , Fluorescence , Humans , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...