Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ ; 383: 2774, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38030218
2.
Arch Public Health ; 80(1): 148, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35624479

ABSTRACT

BACKGROUND: Burden of disease analyses quantify population health and provide comprehensive overviews of the health status of countries or specific population groups. The comparative risk assessment (CRA) methodology is commonly used to estimate the share of the burden attributable to risk factors. The aim of this paper is to identify and address some selected important challenges associated with CRA, illustrated by examples, and to discuss ways to handle them. Further, the main challenges are addressed and finally, similarities and differences between CRA and health impact assessments (HIA) are discussed, as these concepts are sometimes referred to synonymously but have distinctly different applications. RESULTS: CRAs are very data demanding. One key element is the exposure-response relationship described e.g. by a mathematical function. Combining estimates to arrive at coherent functions is challenging due to the large variability in risk exposure definitions and data quality. Also, the uncertainty attached to this data is difficult to account for. Another key issue along the CRA-steps is to define a theoretical minimal risk exposure level for each risk factor. In some cases, this level is evident and self-explanatory (e.g., zero smoking), but often more difficult to define and justify (e.g., ideal consumption of whole grains). CRA combine all relevant information and allow to estimate population attributable fractions (PAFs) quantifying the proportion of disease burden attributable to exposure. Among many available formulae for PAFs, it is important to use the one that allows consistency between definitions, units of the exposure data, and the exposure response functions. When combined effects of different risk factors are of interest, the non-additive nature of PAFs and possible mediation effects need to be reflected. Further, as attributable burden is typically calculated based on current exposure and current health outcomes, the time dimensions of risk and outcomes may become inconsistent. Finally, the evidence of the association between exposure and outcome can be heterogeneous which needs to be considered when interpreting CRA results. CONCLUSIONS: The methodological challenges make transparent reporting of input and process data in CRA a necessary prerequisite. The evidence for causality between included risk-outcome pairs has to be well established to inform public health practice.

3.
Sci Total Environ ; 785: 147111, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33940420

ABSTRACT

Atmospheric particles are a major environmental health risk. Assessments of air pollution related health burden are often based on outdoor concentrations estimated at residential locations, ignoring spatial mobility, time-activity patterns, and indoor exposures. The aim of this work is to quantify impacts of these factors on outdoor-originated fine particle exposures of school children. We apply nested WRF-CAMx modelling of PM2.5 concentrations, gridded population, and school location data. Infiltration and enrichment factors were collected and applied to Athens, Kuopio, Lisbon, Porto, and Treviso. Exposures of school children were calculated for residential and school outdoor and indoor, other indoor, and traffic microenvironments. Combined with time-activity patterns six exposure models were created. Model complexity was increased incrementally starting from residential and school outdoor exposures. Even though levels in traffic and outdoors were considerably higher, 80-84% of the exposure to outdoor particles occurred in indoor environments. The simplest and also commonly used approach of using residential outdoor concentrations as population exposure descriptor (model 1), led on average to 26% higher estimates (15.7 µg/m3) compared with the most complex model (# 6) including home and school outdoor and indoor, other indoor and traffic microenvironments (12.5 µg/m3). These results emphasize the importance of including spatial mobility, time-activity and infiltration to reduce bias in exposure estimates.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Child , Cities , Environmental Exposure/analysis , Environmental Monitoring , Humans , Particle Size , Particulate Matter/analysis , Schools , Time Factors
4.
Article in English | MEDLINE | ID: mdl-31416284

ABSTRACT

Exposure to fine particles in ambient air has been estimated to be one of the leading environmental health risks in Finland. Residential wood combustion is the largest domestic source of fine particles, and there is increasing political interest in finding feasible measures to reduce those emissions. In this paper, we present the PM2.5 emissions from residential wood combustion in Finland, as well as the resulting concentrations. We used population-weighed concentrations in a 250 x 250 m grid as population exposure estimates, with which we calculated the disease burden of the emissions. Compared to a projected baseline scenario, we studied the effect of chosen reduction measures in several abatement scenarios. In 2015, the resulting annual average concentrations were between 0.5 and 2 µg/m3 in the proximity of most cities, and disease burden attributable to residential wood combustion was estimated to be 3400 disability-adjusted life years (DALY) and 200 deaths. Disease burden decreased by 8% in the 2030 baseline scenario and by an additional 63% in the maximum feasible reduction scenario. Informational campaigns and improvement of the sauna stove stock were assessed to be the most feasible abatement measures to be implemented in national air quality policies.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/analysis , Environmental Monitoring/methods , Particulate Matter/adverse effects , Particulate Matter/analysis , Wood/adverse effects , Wood/chemistry , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Finland , Humans
5.
Article in English | MEDLINE | ID: mdl-29649153

ABSTRACT

Air pollution has been estimated to be one of the leading environmental health risks in Finland. National health impact estimates existing to date have focused on particles (PM) and ozone (O3). In this work, we quantify the impacts of particles, ozone, and nitrogen dioxide (NO2) in 2015, and analyze the related uncertainties. The exposures were estimated with a high spatial resolution chemical transport model, and adjusted to observed concentrations. We calculated the health impacts according to Word Health Organization (WHO) working group recommendations. According to our results, ambient air pollution caused a burden of 34,800 disability-adjusted life years (DALY). Fine particles were the main contributor (74%) to the disease burden, which is in line with the earlier studies. The attributable burden was dominated by mortality (32,900 years of life lost (YLL); 95%). Impacts differed between population age groups. The burden was clearly higher in the adult population over 30 years (98%), due to the dominant role of mortality impacts. Uncertainties due to the concentration-response functions were larger than those related to exposures.


Subject(s)
Air Pollutants/economics , Air Pollution/economics , Nitrogen Dioxide/economics , Ozone/economics , Particulate Matter/economics , Adult , Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Environmental Exposure/economics , Finland/epidemiology , Humans , Models, Chemical , Nitrogen Dioxide/analysis , Ozone/analysis , Particulate Matter/analysis , Quality-Adjusted Life Years , Risk , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...