Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(8): 103888, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38851180

ABSTRACT

Outbreaks of hepatitis-hydropericardium syndrome (HHS) caused by fowl adenovirus serotype 4 (FAdV-4) have resulted in huge economic losses to the poultry industry in China since 2015. However, commercially available vaccines against the FAdV-4 infection remain scarce. In our study, subunit vaccine candidates derived from the bacterially expressed recombinant Fiber1 knob domain and Fiber2 knob domain fusion protein (termed as Fiber1/2 knob subunit vaccine) and Fiber2 protein (termed as Fiber2 subunit vaccine) of the FAdV-4 SDSX strain were developed. Immunogenicity evaluation showed that the Fiber1/2 knob subunit vaccine induced the production of antibodies at 7 d postvaccination (dpv), earlier than the Fiber2 subunit vaccine. Moreover, the neutralizing antibody level of the Fiber1/2 subunit vaccine group was higher than the Fiber2 subunit vaccine group, showing significant differences at 14, 21, and 28 dpv. Immune protection test results revealed that both Fiber1/2 knob subunit and Fiber2 subunit vaccines could protect chickens from death against FAdV-4 challenge, although the weight of chickens in the Fiber1/2 knob subunit vaccine group decreased less. Furthermore, analysis of plasma Glutamic oxaloacetic transaminase (AST) and blood glutamic pyruvic transaminase (ALT) levels suggested that the Fiber1/2 subunit vaccine can significantly inhibit liver damage caused by FAdV-4 infection and is more effective in blocking the pathogenicity of FAdV-4 in target organs. In addition, the Fiber1/2 knob subunit vaccine further reduced the viral load in different tissues and virus shedding in chickens than the Fiber2 subunit vaccine. Overall, the Fiber1/2 knob subunit vaccine was more effective than the Fiber2 subunit vaccine. These findings lay the foundation for the development of more effective FAdV-4 subunit vaccines.

2.
Poult Sci ; 103(7): 103853, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795515

ABSTRACT

Short-beak and dwarf syndrome (SBDS) is caused by infection with novel goose parvovirus (NGPV), which leads to intestinal dysbiosis, developmental delay, short beak, lameness, and paralysis in ducks and is the cause of skeletal health problems. NGPV infection can cause intestinal microbial disturbances, but it is still unclear whether the intestinal microbiota affects the pathogenicity of NGPV. Here, the effects of intestinal microbiota on NGPV-induced SBDS in Cherry Valley ducks were assessed by establishing a duck model for gut microflora depletion/reestablishment through antibiotics (ABX) treatment/fecal microbiota transplanted (FMT). By measuring body weight, beak length, beak width and tarsal length, we found that SBDS clinical symptoms were alleviated in ducks treated with ABX, but not in FMT ducks. Next, we conducted a comprehensive analysis of bone metabolism, gut barrier integrity, and inflammation levels using quantitative real-time PCR (qPCR), enzyme linked immunosorbent assay (ELISA), biochemical analysis and histological analysis. The results showed that ABX treatment improved bone quality reduced bone resorption, mitigated tissue lesions, protected intestinal barrier integrity, and inhibited systemic inflammation in NGPV-infected ducks. Moreover, cecal microflora composition and short-chain fatty acids (SCFAs) production were examined by bacterial 16S rRNA sequencing and gas chromatography. The results revealed that ABX treatment mitigated the decreased abundance of Firmicutes and Bacteroidota in NGPV-infected ducks, as well as increased SCFAs production. Furthermore, ABX treatment reduced the mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) and nuclear factor κB (NF-κB) expression, which are correlated with systemic inflammation in SBDS ducks. These findings suggested that intestinal microflora depletion alleviated NGPV-induced SBDS by maintaining intestinal homeostasis, inhibiting inflammatory response and alleviating bone resorption. These results provide evidence for the pivotal role of intestinal microbiota in the process of SBDS and contribute a theoretical basis for the feasibility of microecological preparation as a method to control SBDS.


Subject(s)
Ducks , Gastrointestinal Microbiome , Parvoviridae Infections , Parvovirinae , Poultry Diseases , Animals , Gastrointestinal Microbiome/drug effects , Poultry Diseases/virology , Poultry Diseases/microbiology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvovirinae/genetics , Parvovirinae/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Fecal Microbiota Transplantation/veterinary
3.
Animals (Basel) ; 14(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38254404

ABSTRACT

Porcine circovirus type 3 (PCV3) is endemic in swine worldwide and causes reproductive disorders, dermatitis and nephrotic syndrome, and multi-organ inflammation. Currently, there is a growing need for rapid and accurate diagnostic methods in disease monitoring. In this study, four monoclonal antibodies (mAbs) against PCV3 capsid proteins were prepared (mAbs 2F6, 2G8, 6E2, and 7E3). MAb 7E3, which had the highest binding affinity for the Cap protein, was chosen for further investigation. A novel B cell epitope 110DLDGAW115 was identified using mAb 7E3. An epitope-blocking (EB) enzyme-linked immunosorbent assay (ELISA) was successfully developed using horseradish-peroxidase-labeled mAb 7E3 to detect PCV3 antibodies in porcine sera. Moreover, the EB-ELISA showed no specific reaction with other porcine disease sera, and the cut-off value was defined as 35%. Compared with the commercial ELISA, the percentage agreement was 95.59%. Overall, we have developed a novel EB-ELISA method that accurately and conveniently detects PCV3 in serum, making it a valuable tool for the clinical detection of PCV3 infection.

4.
Vet Microbiol ; 279: 109678, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36758273

ABSTRACT

Pseudorabies virus (PRV) variants have been widely prevalent since 2011, leading to substantial losses to the swine industry. Although PRV can cause cross-species transmission and induce human infection, no drugs can currently prevent PRV infection. Interferons (IFNs) and interleukin-2 (IL-2) are important cytokines that mediate several biological functions including antiviral activity and immune regulation. In this study, we expressed and purified a recombinant porcine IFN-α and IL-2 fusion protein (rPoIFNα+IL-2), which did not show a cytotoxic effect on PK-15 cells. The antiviral activity was evaluated in PK-15 cells using the cytopathic effect inhibition method, and the results indicated that rPoIFNα+IL-2 can inhibit the replication of PRV, with an antiviral activity of approximately 104 U/mL. Moreover, the proliferation of peripheral blood mononuclear cells was enhanced by rPoIFNα+IL-2. Additionally, rPoIFNα+IL-2 substantially increased the expression of IFN-stimulated genes, including IFIT1, ISG15, MX1, and OAS, which are critical for antiviral activity. Furthermore, rPoIFNα+IL-2 alleviated the clinical symptoms and reduced mortality in mice infected with PRV. Simultaneously, rPoIFNα+IL-2 increased the expression levels of IFN-γ and IL-10 and inhibited the expression of IL-1ß and IL-6. Additionally, the viral DNA copies in different tissues in the rPoIFNα+IL-2-treated group were lower than those in the untreated group. These findings indicate that rPoIFNα+IL-2 may serve as an antiviral agent for the prevention and treatment of PRV infection and may expand the potential function of IFN antiviral drugs in the future.


Subject(s)
Herpesvirus 1, Suid , Interleukin-2 , Swine , Humans , Animals , Mice , Interleukin-2/pharmacology , Herpesvirus 1, Suid/genetics , Leukocytes, Mononuclear , Interferon-alpha/pharmacology , Antiviral Agents/pharmacology
5.
Front Immunol ; 13: 951984, 2022.
Article in English | MEDLINE | ID: mdl-35911774

ABSTRACT

Senecavirus A (SVA), also known as Seneca Valley virus, is a recently discovered picornavirus that can cause swine vesicular disease, posing a great threat to the global swine industry. It can replicate efficiently in cells, but the molecular mechanism remains poorly understood. This study determined the host's differentially expressed proteins (DEPs) during SVA infection using dimethyl labeling based on quantitative proteomics. Among the DE proteins, DDX21, a member of the DEAD (Asp-Glu-Ala-Asp)-box RNA helicase (DDX) family, was downregulated and demonstrated inhibiting SVA replication by overexpression and knockdown experiment. To antagonize this antiviral effect of DDX21, SVA infection induces the degradation of DDX21 by 2B and 3C proteins. The Co-IP results showed that 2B and 3C did not interact with DDX21, suggesting that the degradation of DDX21 did not depend on their interaction. Moreover, the 3C protein protease activity was necessary for the degradation of DDX21. Furthermore, our study revealed that the degradation of DDX21 by 2B and 3C proteins of SVA was achieved through the caspase pathway. These findings suggest that DDX21 was an effective antiviral factor for suppressing SVA infection and that SVA antagonized its antiviral effect by degrading DDX21, which will be useful to guide further studies into the mechanism of mutual regulation between SVA and the host.


Subject(s)
Antiviral Agents , Picornaviridae , Animals , Antiviral Agents/pharmacology , Caspases , Picornaviridae/genetics , Swine , Viral Proteins/metabolism
6.
Poult Sci ; 101(7): 101929, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35691050

ABSTRACT

In recent years, ostrich disease characterized by paralysis and diarrhea has been circulating in some regions of China, causing huge economic losses to the ostrich breeding industry. In our study, clinical samples from diseased ostriches were collected, and only parvovirus was detected. The virus distribution analysis by histopathology and quantitative real-time PCR assays indicated that the virus had a wide range of tissue tropisms. The full-length genome of the ostrich parvovirus (OsPV) was sequenced and comprehensively analyzed. Interestingly, the phylogenetic and alignment results indicated that the OsPV and the goose parvovirus (GPV) form a separate branch. In contrast to GPV strains, OsPV showed 2 new 14 nucleotide deletions in the inverted terminal repeat (ITR) region. Furthermore, recombination analysis indicated that OsPV was a recombination strain between the vaccine strain SYG61v and the virulent strain B strain, with the major parent of OsPV as the SYG61v strain and the minor parent as the B strain. The 14 nucleotide deletions in the ITR region as well as recombination may be some of the reasons for the cross-species transmission of parvovirus from goose to ostrich. The above data will contribute to a better understanding of the molecular biology of the novel OsPV and help to develop the vaccine candidate strain.


Subject(s)
Parvoviridae Infections , Parvovirus , Poultry Diseases , Struthioniformes , Animals , Chickens , China/epidemiology , Ducks , Geese , Genomics , Nucleotides , Parvoviridae Infections/veterinary , Parvovirinae , Parvovirus/genetics , Phylogeny , Poultry Diseases/epidemiology
7.
Front Microbiol ; 13: 925953, 2022.
Article in English | MEDLINE | ID: mdl-35722302

ABSTRACT

Circular RNAs (circRNAs) are a new class of noncoding RNAs that play vital roles in many biological processes. Virus infection induces modifications in cellular circRNA transcriptomes and expresses viral circRNAs. The outbreaks of Hydropericardium-hepatitis syndrome (HHS) caused by fowl adenovirus serotype 4 (FAdV-4) have resulted in huge economic losses to the poultry industry worldwide. To investigate the expression of circRNAs during FAdV-4 infection, we performed transcriptome analysis of FAdV-4-infected leghorn male hepatoma (LMH) cells. In total, 19,154 cellular circRNAs and 135 differentially expressed (DE) cellular circRNAs were identified. The characteristics of the DE cellular circRNAs were analyzed and most of them were related to multiple biological processes according to GO and KEGG enrichment analysis. The accuracy of 10 cellular circRNAs were verified by semiquantitative RT-PCR and sequencing. The change trend was consistent with the RNA sequencing results. Moreover, 2014 viral circRNAs were identified and 10 circRNAs were verified by the same methods. Our analysis showed that seven circRNAs with the same 3' terminal and variable 5' terminal regions were located at pTP protein and DNA pol protein of FAdV-4, which may be generated via alternative splicing events. Moreover, the expression level of viral circRNAs was closely related to the replication efficiency of the virus and partial of the viral circRNAs promoted the replication of FAdV-4. Competing endogenous RNA analysis further showed that the effects of cellular and viral circRNAs on host or viral genes may act via miRNAs. Collectively, our findings first indicate that FAdV-4 infection induced the differential expression of cellular circRNAs and FAdV-4 also expressed viral circRNAs, some of which affected FAdV-4 replication. These findings will provide new clues for further understanding FAdV-4 and provide a basis for investigating host-virus interactions.

8.
Front Microbiol ; 12: 745502, 2021.
Article in English | MEDLINE | ID: mdl-34659180

ABSTRACT

Senecavirus A (SVA), also known as Seneca Valley virus, is a recently emerged picornavirus that can cause swine vesicular disease, posing a great threat to the global swine industry. A recombinant reporter virus (rSVA-Nluc) stably expressing the nanoluciferase (Nluc) gene between SVA 2A and 2B was developed to rapidly detect anti-SVA neutralizing antibodies and establish a high-throughput screen for antiviral agents. This recombinant virus displayed similar growth kinetics as the parental virus and remained stable for more than 10 passages in BHK-21 cells. As a proof-of-concept for its utility for rapid antiviral screening, this reporter virus was used to rapidly quantify anti-SVA neutralizing antibodies in 13 swine sera samples and screen for antiviral agents, including interferons ribavirin and interferon-stimulated genes (ISGs). Subsequently, interfering RNAs targeting different regions of the SVA genome were screened using the reporter virus. This reporter virus (rSVA-Nluc) represents a useful tool for rapid and quantitative screening and evaluation of antivirals against SVA.

SELECTION OF CITATIONS
SEARCH DETAIL
...