Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Med ; 29(1): 62, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37158850

ABSTRACT

BACKGROUND: Hepatic ischemia/reperfusion (I/R) injury is one of the major pathological processes associated with various liver surgeries. However, there is still a lack of strategies to protect against hepatic I/R injury because of the unknown underlying mechanism. The present study aimed to identify a potential strategy and provide a fundamental experimental basis for treating hepatic I/R injury. METHOD: A classic 70% ischemia/reperfusion injury was established. Immunoprecipitation was used to identify direct interactions between proteins. The expression of proteins from different subcellular localizations was detected by Western blotting. Cell translocation was directly observed by immunofluorescence. HE, TUNEL and ELISA were performed for function tests. RESULT: We report that tripartite motif containing 37 (TRIM37) aggravates hepatic I/R injury through the reinforcement of IKK-induced inflammation following dual patterns. Mechanistically, TRIM37 directly interacts with tumor necrosis factor receptor-associated factor 6 (TRAF6), inducing K63 ubiquitination and eventually leading to the phosphorylation of IKKß. TRIM37 enhances the translocation of IKKγ, a regulatory subunit of the IKK complex, from the nucleus to the cytoplasm, thereby stabilizing the cytoplasmic IKK complex and prolonging the duration of inflammation. Inhibition of IKK rescued the function of TRIM37 in vivo and in vitro. CONCLUSION: Collectively, the present study discloses some potential function of TRIM37 in hepatic I/R injury. Targeting TRIM37 might be potential for treatment against hepatic I/R injury.Targeting TRIM37 might be a potential treatment strategy against hepatic I/R injury.


Subject(s)
I-kappa B Kinase , Protein Serine-Threonine Kinases , Humans , Inflammation , Liver , Ischemia , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/genetics
2.
Clin Immunol ; 251: 109325, 2023 06.
Article in English | MEDLINE | ID: mdl-37030526

ABSTRACT

Ischemia-reperfusion injury (IRI) is one of the most common complications in liver transplantation. METTL3 regulates inflammation and cellular stress response by modulating RNA m6A modification level. Here, the study aimed to investigate the role and mechanism of METTL3 in IRI after rat orthotopic liver transplantation. The total RNA m6A modification and METTL3 expression level was consistently down-regulated after 6 h or 24 h reperfusion in OLT, which is negatively associated with the hepatic cell apoptosis. Functionally, METTL3 pretreatment in donor significantly inhibited liver grafts apoptosis, improved liver function and depressed the proinflammatory cytokine/chemokine expression. Mechanistically, METTL3 inhibited apoptosis of grafts via upregulating HO-1. Moreover, m6A dot blot and MeRIP-qPCR assay revealed that METTL3 promoted HO-1 expression in an m6A-dependent manner. In vitro, METTL3 alleviated hepatocytes apoptosis by upregulating HO-1 under hypoxia/reoxygenation condition. Taken together, these findings demonstrate that METTL3 ameliorates rat OLT-stressed IRI by inducing HO-1 in an m6A-dependent manner, highlighting a potential target for IRI in liver transplantation.


Subject(s)
Liver Transplantation , Reperfusion Injury , Rats , Animals , Liver Transplantation/adverse effects , Liver/metabolism , Inflammation/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , RNA/metabolism
3.
Front Oncol ; 12: 760190, 2022.
Article in English | MEDLINE | ID: mdl-35419294

ABSTRACT

We aimed to propose a cell cycle-related multi/mRNA signature (CCS) for prognosis prediction and uncover new tumor-driver genes for hepatocellular carcinoma (HCC). Cell cycle-related gene sets and HCC samples with mRNA-Seq data were retrieved from public sources. The genes differentially expressed in HCCs relative to normal peritumoral tissues were extracted through statistical analysis. The CCS was constructed by Cox regression analyses. Predictive capacity and clinical practicality of the signature were evaluated and validated. The expression of the function-unknown genes in the CCS was determined by RT-qPCR. Candidate gene TICRR was selected for subsequent validation through functional experiments. A cell cycle-related 13-mRNA signature was generated from the exploratory cohort [The Cancer Genome Atlas (TCGA), n = 371)]. HCC cases were classified as high- vs. low-risk groups per overall survival (OS) [hazard ratio (HR) = 2.699]. Significantly, the CCS exhibited great predictive value for prognosis in three independent cohorts, particularly in GSE76427 cohort [area under the curve (AUC) = 0.835/0.822/0.808/0.821/0.826 at 1/2/3/4/5 years]. The nomogram constructed by integrating clinicopathological features with the CCS indicated high accuracy and practicability. Significant enrichment of tumorigenesis-associated pathways was observed in the high-risk patients by Gene Set Enrichment Analysis (GSEA). RT-qPCR revealed that TICRR was overexpressed in HCC samples. Increased TICRR expression implied poor prognosis in HCC patients. Furthermore, depletion of TICRR in HCC cells decreased cell proliferation and the G1/S transition. In conclusion, the established 13-CCS had efficacy in prognostic prediction of HCC patients. Additionally, TICRR was demonstrated as a tumor-driver gene for this deadly disease.

4.
Mater Today Bio ; 13: 100216, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35243291

ABSTRACT

Gelatin-based hydrogels have a broad range of biomedical fields due to their biocompatibility, convenience for chemical modifications, and degradability. However, gelatin-based hydrogels present poor antibacterial ability that hinders their applications in treating infected wound healing. Herein, a series of multifunctional hydrogels (Gel@Zn) were fabricated through free-radical polymerization interaction based on gelatin methacrylate (GelMA) and dopamine methacrylate (DMA), and then immersed them into zinc nitrate solutions based on the metal coordination and ionic bonding interaction. These designed hydrogels wound dressings show strong antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by increasing intracellular reactive oxygen species (ROS) level and changing bacterial membrane permeability. Meanwhile, the hydrogels exhibit good cytocompatibility, enhance the adhesion, proliferation, and migration of NIH-3T3 cells. Furthermore, Gel@Zn-0.08 (0.08 â€‹M Zn2+ immersed with Gel sample) presents a good balance between antibacterial effect, cell viability, and hemolytic property. Compared with 3 â€‹M commercial dressings, Gel@Zn-0.04, and Gel@Zn-0.16, the Gel@Zn-0.08 could significantly improve the healing process of S. aureus-infected full-thickness wounds via restrained the inflammatory responses, enhanced epidermis and granulation tissue information, and stimulated angiogenesis. Our study indicates that the Zn-incorporated hydrogels are promising bioactive materials as wound dressings for infected full-thickness wound healing and skin regeneration.

5.
J Biomed Mater Res A ; 110(4): 943-953, 2022 04.
Article in English | MEDLINE | ID: mdl-34873824

ABSTRACT

RADA16 is a self-assembling peptide material with good bioactivity. To improve the bioactivity of a material, some specific functional motifs can be added to its peptide sequence. Here, we report a self-assembling peptide nanogel, RADA16-RGD, that has better bioactivity than RADA16 and can simultaneously carry and control the release of two growth factors, VEGF and BMP-2, which have synergistic effects on bone formation. The peptide materials were characterized by transmission electron microscopy and scanning electron microscopy. The mechanical properties of the peptides were evaluated by the rheology test. The biocompatibility of the materials was evaluated via the use of the CCK-8 test, live/dead staining and confocal laser scanning microscopy. Osteogenesis capability in vitro was evaluated by means of ALP staining, extracellular matrix mineralization and detection of osteogenic markers. The controlled release of growth factors was examined by ELISA. The results showed that RADA16-RGD exhibited a better ability than RADA16 to promote cell proliferation, adhesion and bone formation. In addition, RADA16-RGD had good biocompatibility and exhibited effective controlled release of VEGF and BMP-2. More importantly, compared with RADA16-RGD loaded with single growth factor or without growth factors, RADA16-RGD loaded with two growth factors exhibited a stronger ability to promote cell proliferation and osteogenesis. This study provides a promising strategy for the application of self-assembling peptides to promote osteogenesis and controlled release of proteins.


Subject(s)
Bone Regeneration , Peptides , Cell Proliferation , Delayed-Action Preparations/pharmacology , Hydrogels/chemistry , Osteogenesis , Peptides/chemistry
6.
Front Oncol ; 11: 716757, 2021.
Article in English | MEDLINE | ID: mdl-34900672

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the world's most prevalent and lethal cancers. Notably, the microenvironment of tumor starvation is closely related to cancer malignancy. Our study constructed a signature of starvation-related genes to predict the prognosis of liver cancer patients. METHODS: The mRNA expression matrix and corresponding clinical information of HCC patients were obtained from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). Gene set enrichment analysis (GSEA) was used to distinguish different genes in the hunger metabolism gene in liver cancer and adjacent tissues. Gene Set Enrichment Analysis (GSEA) was used to identify biological differences between high- and low-risk samples. Univariate and multivariate analyses were used to construct prognostic models for hunger-related genes. Kaplan-Meier (KM) and receiver-operating characteristic (ROC) were used to assess the model accuracy. The model and relevant clinical information were used to construct a nomogram, protein expression was detected by western blot (WB), and transwell assay was used to evaluate the invasive and metastatic ability of cells. RESULTS: First, we used univariate analysis to identify 35 prognostic genes, which were further demonstrated to be associated with starvation metabolism through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). We then used multivariate analysis to build a model with nine genes. Finally, we divided the sample into low- and high-risk groups according to the median of the risk score. KM can be used to conclude that the prognosis of high- and low-risk samples is significantly different, and the prognosis of high-risk samples is worse. The prognostic accuracy of the 9-mRNA signature was also tested in the validation data set. GSEA was used to identify typical pathways and biological processes related to 9-mRNA, cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway, as well as biological processes related to the model. As evidenced by WB, EIF2S1 expression was increased after starvation. Overall, EIF2S1 plays an important role in the invasion and metastasis of liver cancer. CONCLUSIONS: The 9-mRNA model can serve as an accurate signature to predict the prognosis of liver cancer patients. However, its mechanism of action warrants further investigation.

7.
Biosci Rep ; 41(4)2021 04 30.
Article in English | MEDLINE | ID: mdl-33764367

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide. Neovascularization is closely related to the malignancy of tumors. We constructed a signature of angiogenesis-related long noncoding RNA (lncRNA) to predict the prognosis of patients with HCC. The lncRNA expression matrix of 424 HCC patients was downloaded from The Cancer Genome Atlas (TCGA). First, gene set enrichment analysis (GSEA) was used to distinguish the differentially expressed genes of the angiogenesis genes in liver cancer and adjacent tissues. Next, a signature of angiogenesis-related lncRNAs was constructed using univariate and multivariate analyses, and receiver operating characteristic (ROC) curves were used to assess the accuracy. The signature and relevant clinical information were used to construct the nomogram. A 5-lncRNA signature was highly correlated with overall survival (OS) in HCC patients and performed well in evaluations using the C-index, areas under the curve, and calibration curves. In summary, the 5-lncRNA model can serve as an accurate signature to predict the prognosis of patients with liver cancer, but its mechanism of action must be further elucidated by experiments.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Neovascularization, Pathologic/genetics , RNA, Long Noncoding/genetics , Aged , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Female , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Middle Aged , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , RNA, Long Noncoding/metabolism
8.
Onco Targets Ther ; 13: 11839-11848, 2020.
Article in English | MEDLINE | ID: mdl-33235470

ABSTRACT

INTRODUCTION: Forkhead box (FOX) superfamily members were recently shown to play important roles in tumor development and progression. Forkhead box S1 (FOXS1), a member of the FOX family, has been reported to be closely associated with malignant neoplasms. However, its expression and effect on hepatocellular carcinoma remain unclear. The aim of this study was to determine the expression and role of FOXS1 in hepatocellular carcinoma (HCC). METHODS: Real-time PCR, Western blot and immunohistochemistry assays were carried out to determine FOXS1 expression in HCC tissues and cells. The biological roles of FOXS1 in HCC were investigated using CCK-8, colony formation, transwell and wound healing. Additionally, the effect of FOXS1 on epithelial-mesenchymal transition (EMT) was investigated by Western blotting. Xenograft model was carried out to evaluate the effect of FOXS1 in vivo. RESULTS: In our study, we confirmed lower FOXS1 expression in HCC samples than in normal liver tissues by performing Western blotting, immunohistochemistry and real-time PCR assays. In addition, FOXS1 expression is strongly associated with the prognosis of patients with HCC. Overexpression of FOXS1 suppressed cell proliferation, colony formation, the epithelial-mesenchymal transition (EMT) and the hedgehog (Hh) signaling pathway in vitro and in vivo. SAG, an activator of Hh signaling, partially reversed the effect of FOXS1 overexpression on HCC cells. CONCLUSION: FOXS1 might suppress HCC cell proliferation, colony formation, and EMT by inhibiting the Hh signaling pathway, indicating that FOXS1 may be a promising biological target in HCC.

9.
Int Immunopharmacol ; 88: 106889, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32805693

ABSTRACT

B7-H4 and autophagy can regulate or be induced by the PI3K signaling pathway. However, the association between B7-H4 and autophagy in hepatocellular carcinoma (HCC)remains unclear. The aim of this work was to investigate whether B7-H4 regulates autophagy via the PI3K signaling pathway in HCC cells. Here, western blotting was used to measure the expression of the related proteins involved in changes in of autophagy and apoptosis, such as LC3, P62, cleaved caspase 3, cleaved PARP, BCL-2, and BAX in Huh7 and Hep3B cells. Additionally, PI3K/AKT/mTOR signaling pathway proteins were measured. Cell counting kit-8 and flow cytometry were used to analyze the effects of B7-H4 siRNA interference on cell proliferation with the interference of B7-H4 siRNA. We found that B7-H4 siRNA increased HCC cell apoptosis and autophagy, and reduced cell proliferation. Moreover, the apoptosis-related proteins cleaved caspase 3, cleaved PARP and BAX were increased and Bcl-2 was decreased after B7-H4 siRNA interference. The expression level of the autophagy-related protein LC3Ⅱ was upregulated, while expression of the autophagy adaptor P62 expression was decreased in B7-H4 siRNA-pretreated cells. Furthermore, our data revealed that B7-H4 regulated apoptosis and autophagy through the PI3K signaling pathway in HCC cells. Therefore, these results suggested that B7-H4 plays an important role in HCC progression by affecting cell apoptosis and autophagy.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , V-Set Domain-Containing T-Cell Activation Inhibitor 1/antagonists & inhibitors , Apoptosis , Autophagy , Cell Line, Tumor , Cell Proliferation , Humans , RNA, Small Interfering/genetics , Signal Transduction , V-Set Domain-Containing T-Cell Activation Inhibitor 1/genetics , V-Set Domain-Containing T-Cell Activation Inhibitor 1/metabolism
10.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 36(7): 603-608, 2020 Jul.
Article in Chinese | MEDLINE | ID: mdl-32727644

ABSTRACT

Objective To investigate the effects of co-stimulatory molecule B7-H4/VTCN1 on apoptosis and autophagy of hepatocellular carcinoma (HCC) cells and the potential signaling pathways. Methods After Huh7 cells were treated by B7-H4 siRNA, CCK-8 assay was used to detect the cell proliferation. Cell apoptosis was measured by flow cytometry. The protein expression levels of cleaved caspase-3 (c-caspase-3), Bcl2, LC3, P62, JNK and phosphorylated JNK (p-JNK) were examined by Western blot analysis. The autophagosome was observed by monodansylcadaverine (MDC) assay. Results After the knockdown of B7-H4, the apoptosis and autophagy of HCC cells increased, and cell proliferation decreased. Moreover, the expression levels of c-caspase-3 and LC3 II went up, while the expression levels of Bcl2 and P62 went down. Furthermore, the phosphorylation of JNK was also inhibited, and autophagosome was visible. Conclusion Knockdown of B7-H4 promotes the apoptosis and autophagy in HCC cells, which may be related to the inhibited phosphorylation of JNK.


Subject(s)
Autophagy , Carcinoma, Hepatocellular , Liver Neoplasms , V-Set Domain-Containing T-Cell Activation Inhibitor 1/genetics , Apoptosis/genetics , Autophagy/genetics , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation , Humans , Liver Neoplasms/genetics , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...