Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Gen Med ; 15: 4635-4647, 2022.
Article in English | MEDLINE | ID: mdl-35535142

ABSTRACT

Background: Spindle and kinetochore-associated complex subunit 3 (SKA3) plays important roles in promoting the migration and the invasion of various human cancer cells. There are a few studies on SKA3 in lung adenocarcinoma (LUAD), but the in-depth analysis of the expression of SKA3 and the correlated possible immune mechanism of SKA3 in LUAD are not clear. Methods: In our study, the expression and survival data of SKA3 were analyzed in LUAD using TIMER, Oncomine, UALCAN, cBioPortal, LinkedOmics, Human Protein Atlas, and Kaplan-Meier plotter. Then, quantitative PCR was used to verify the expression differences of SKA3 between LUAD tissues of mice and the normal tissues. Results: We established that the expression of SKA3 in the LUAD group was remarkably higher than that in the normal group. Additionally, high SKA3 expression was linked to poorer survival in LUAD. Moreover, SKA3 expression had a remarkable negative correlation with the immune infiltration of B cells, macrophages, and CD4+ T cells. SKA3 was markedly negatively related to the immune type biomarkers of T cells and B cells in LUAD. The elevated expression of SKA3 with LUAD in enriched B cells, CD4+ T cells, CD8+ T cells, macrophages and Treg cells had worse prognosis, respectively. Functional network analysis showed that SKA3 regulated the mitotic cell cycle, mitosis, chromosome segregation and cell division via pathways. Conclusion: In summary, our study suggested that SKA3 was highly expressed in LUAD and SKA3 might function as a prognostic biomarker in LUAD. Besides, SKA3 may be a candidate oncogene, which correlates with poor prognosis and immune infiltration in lung adenocarcinoma.

2.
Opt Express ; 27(19): 26924-26939, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31674563

ABSTRACT

High-performance GeSn multiple-quantum-well (MQW) photodiode is demonstrated on a 200 mm Ge-on-insulator (GeOI) photonics platform for the first time. Both GeSn MQW active layer stack and Ge layer (top Ge layer of GeOI after bonding) were grown using a single epitaxy step on a standard (001)-oriented Si substrate (donor wafer) using a reduced pressure chemical vapor deposition (RPCVD). Direct wafer bonding and layer transfer technique were then employed to transfer the GeSn MQW device layers and Ge layer to a 200 mm SiO2-terminated Si handle substrate. The surface illuminated GeSn MQW photodiode realized on this platform exhibits an ultra-low leakage current density of 25 mA/cm2 at room temperature and an enhanced photo sensitivity at 2 µm of 30 mA/W as compared to a GeSn MQW photodiode on Si at 2 µm. The underlying GeOI platform enables monolithic integration of a complete suite of photonics devices operating at 2 µm band, including GeOI strip waveguides, grating couplers, micro-ring modulators, Mach-Zehnder interferometer modulators, etc. In addition, Ge CMOS circuits can also be realized on this common platform using a "photonic-first and electronic-last" processing approach. In this work, as prototype demonstration, both Ge p- and n-channel fin field-effect transistors (FinFETs) were realized on GeOI simultaneously with decent static electrical characteristics. Subthreshold swings of 150 and 99 mV/decade at |VD| = 0.1 V and drive currents of 91 and 10.3 µA/µm at |VG-VTH| = 1 V and |VD| = 0.75 V were achieved for p- and n-FinFETs, respectively. This works illustrates the potential of integrating GeSn (as photo detection material) on GeOI platform for Ge-based optoelectronics integrated circuits (OEICs) targeting communication applications at 2 µm band.

3.
Opt Express ; 26(13): 17312-17321, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30119544

ABSTRACT

We report the first experimental demonstration of germanium-tin (GeSn) lateral p-i-n photodetector on a novel GeSn-on-insulator (GeSnOI) substrate. The GeSnOI is formed by direct wafer bonding and layer transfer technique, which is promising for large-scale integration of nano-electronics and photonics devices. The fabricated GeSnOI photodetector shows well-behaved diode characteristics with high Ion/Ioff ratio of ~4 orders of magnitude (at ± 1 V) at room temperature. A cutoff detection beyond 2 µm with photo responsivity (Rop) of 0.016 A/W was achieved at the wavelength (λ) of 2004 nm.

4.
Opt Express ; 26(8): 10305-10314, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29715969

ABSTRACT

We report the first demonstration of high-performance GeSn metal-semiconductor-metal (MSM) photodetector and GeSn p-type fin field-effect transistor (pFinFET) on an advanced GeSn-on-insulator (GeSnOI) platform by complementary metal-oxide-semiconductor (CMOS) compatible processes. The detection range of GeSn photodetector is extended beyond 2 µm, with responsivities of 0.39 and 0.10 A/W at 1550 nm and 2003 nm, respectively. Through the insertion of an ultrathin Al2O3 Schottky-barrier-enhancement layer, the dark current IDark of the GeSn photodetector is suppressed by more than 2 orders of magnitude. An impressive IDark of ~65 nA was achieved at an operating voltage of 1.0 V. A frequency response measurement reveals the achievement of a 3-dB bandwidth of ~1.4 GHz at an illumination wavelength of 2 µm. GeSn pFinFET with fin width (Wfin) scaled down to 15 nm was also fabricated on the GeSnOI platform, exhibiting a small subthreshold swing (S) of 93 mV/decade, a high drive current of 176 µA/µm, and good control of short channel effects (SCEs). This work paves the way for realizing compact, low-cost, and multi-functional GeSn-on-insulator opto-electronic integrated circuits.

5.
Opt Express ; 25(16): 18502-18507, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041050

ABSTRACT

The floating-base germanium-tin (Ge1-xSnx) heterojunction phototransistor (HPT) is designed and investigated as an efficient optical receiver in the short-wave infrared range. Simulations indicate that as the Sn content increases, the responsivity significantly increases due to a higher absorption coefficient and a larger valence band offset between Ge and Ge1-xSnx. Ge0.935Sn0.065 HPTs that incorporated high-quality Ge0.935Sn0.065 film grown by molecular beam epitaxy were fabricated, demonstrating optical response beyond wavelength of 2003 nm. At a low bias voltage of 1.0 V, optical response enhancement of ~10 times was achieved over the conventional Ge0.935Sn0.065 p-i-n photodiode. High responsivities of ~1.8 A/W at 1550 nm and ~0.043 A/W at 2003 nm were demonstrated with low dark current density of 0.147 A/cm2.

6.
Opt Express ; 25(14): 15818-15827, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28789094

ABSTRACT

We report the demonstration of a germanium-tin (Ge0.9Sn0.1) multiple-quantum-well p-i-n photodiode on silicon (Si) substrate for 2 µm-wavelength light detection. Characterization of the photodetector in both direct current (DC) and radio frequency (RF) regimes was performed. At the bias voltage of -1 V, a dark current density of 0.031 A/cm2 is realized at room-temperature, which is among the lowest reported values for Ge1-xSnx-on-Si p-i-n photodiodes. In addition, for the first time, a 3 dB bandwidth (f3dB) of around 1.2 GHz is achieved in Ge1-xSnx photodetectors operating at 2 µm. It is anticipated that further device optimization would extend the f3dB to above 10 GHz.

7.
Sci Rep ; 7(1): 1835, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28500296

ABSTRACT

We developed a new digital etch process that allows precise etching of Germanium or Germanium-tin (Ge1-x Sn x ) materials. The digital etch approach consists of Ge1-x Sn x oxide formation by plasma oxidation and oxide removal in diluted hydrochloric acid at room temperature. The first step is a self-limiting process, as the thickness of oxide layer grows logarithmically with the oxidation time and saturates fast. Consistent etch rates in each cycle were found on the Ge1-x Sn x samples, with the surfaces remaining smooth after etch. The digital etch process parameters were tuned to achieve various etch rates. By reducing the radio frequency power to 70 W, etch rate of sub-1.2 nm was obtained on a Ge0.875Sn0.125 sample. The digital etch process was employed to fabricate the Ge1-x Sn x fin structures. Extremely scaled Ge0.95Sn0.05 fins with 5 nm fin width were realized. The side walls of the Ge0.95Sn0.05 fins are smooth, and no crystal damage can be observed. This technique provides an option to realize aggressively scaled nanostructure devices based on Ge1-x Sn x materials with high-precision control.

8.
Opt Express ; 23(14): 18611-9, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26191919

ABSTRACT

We demonstrate that a complementary metal-oxide-semiconductor (CMOS) compatible silicon (Si) surface passivation technique effectively suppress the dark current originating from the mesa sidewall of the Ge(0.95)Sn(0.05) on Si (Ge(0.95)Sn(0.05)/Si) p-i-n photodiode. Current-voltage (I-V) characteristics show that the sidewall surface passivation technique could reduce the surface leakage current density (Jsurf) of the photodiode by ~100 times. A low dark current density (Jdark) of 0.073 A/cm(2) at a bias voltage of -1 V is achieved, which is among the lowest reported values for Ge(1-x)Sn(x)/Si p-i-n photodiodes. Temperature-dependent I-V measurement is performed for the Si-passivated and non-passivated photodiodes, from which the activation energies of dark current are extracted to be 0.304 eV and 0.142 eV, respectively. In addition, the optical responsivity of the Ge(0.95)Sn(0.05)/Si p-i-n photodiodes to light signals with wavelengths ranging from 1510 nm to 1877 nm is reported.

9.
Huan Jing Ke Xue ; 32(8): 2397-402, 2011 Aug.
Article in Chinese | MEDLINE | ID: mdl-22619969

ABSTRACT

The selective culture method and PCR-DGGE technology were applied to analyze the number and the biodiversity of microorganism species in cells with plant intercropping models and without plants in different seasons in a wetland system constructed for treatment of municipal sewage. The results showed that the numbers of microorganisms were considerably larger in the cells with plant intercropping models than those without plants, while the number of microorganisms was apparently larger in summer than that in winter in all treatments. Along the three-sequenced treatment cells with plant intercropping models a "low-high-low" changing trend in the numbers of microorganisms in summer. The UPGMA cluster analysis showed that the treatments in the same season were clustered in the same branch except for a few samples in winter and the biodiversity index was consistently higher in summer than that in winter. Five different sequences (DF1-DF5) were obtained through BLAST analysis and retrieval. The closest known origin groups were located as Escherichia coli, Citrobacter sp., Proteus sp., Klebsiella oxytoca, and Burkholderia sp. respectively. The BLASTX comparison test showed that DF1 closely related to the activities of the Mycobacterium bacillus and the Bacillus amyloliquefaciens, DF2 functioned as a conservative potential ATP binding protein, DF3 related to the activities of the Bacillus cereus spore, DF4 was involved in catabolism metabolism of microorganism and DF5 played an important role in decomposition of organic matters.


Subject(s)
Biodiversity , Plant Roots/microbiology , Plants/classification , Waste Disposal, Fluid/methods , Wetlands , Bacteria/classification , Bacteria/growth & development , Cities , Plant Development , Seasons , Sewage
10.
Huan Jing Ke Xue ; 31(8): 1789-94, 2010 Aug.
Article in Chinese | MEDLINE | ID: mdl-21090294

ABSTRACT

In order to establish an evaluation system for selection of winter wetland plants possessing high wastewater purification potentials in subtropics areas, designed sewage treatment experiments were carried out by introducing into the constructed wetlands 25 species of winter wetland plants. Cluster analysis was performed by including harmful environment-resistant enzyme and substrate enzyme activities into the commonly applied plant screening and assessment indexes system. The obtained results indicated that there were significant differences among the tested winter plants in their root length and vigor, leaf malonaldehyde (MDA), biomass, average nitrogen and phosphorus concentration and uptake, and urease and phosphoric acid enzyme activities in the root areas. Based on the established evaluation system, the tested plants were clustered into 3 groups. The plants in the 1st group possessing high purification potentials are Oenanthe javanica, Brassicacapestris, Juncus effusu, Saxifragaceae, Iris pseudoacorus, Osmanthus fragrans and Iris ensata; those in the 2nd group possessing moderate purification potentials are Brassica oleracea var acephala, Calendula officinalis, Aucuba japonica, Ligustrum lucidu, Beta vulgaris, Rhododendron simsii and Ilex latifolia; and those in the 3rd group with low purification potentials are Brassica oleracea var acephala, Calistephus chinensis, Rosa chinensis, Antirrhinums, Liriope palatyphylla, Zephyranthes candida, Fatshedera lizei, Petunia hybrida, Ilex quihoui, Dianthus caryophyllus and Loropetalum chinensis.


Subject(s)
Plants/classification , Plants/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Wetlands , Biodegradation, Environmental , Cold Temperature , Iris/metabolism , Nitrogen/metabolism , Oenanthe/metabolism , Phosphorus/metabolism , Plant Development , Saxifragaceae/metabolism , Seasons , Water Pollutants, Chemical/isolation & purification
11.
J Environ Sci (China) ; 18(6): 1167-75, 2006.
Article in English | MEDLINE | ID: mdl-17294960

ABSTRACT

Experiments on Zn2+ and Cd2+ adsorptions on vermiculite in aqueous solutions were conducted to investigate the widely observed adsorbent concentration effect on the traditionally defined adsorption isotherm in the adsorbate range 25-500 mg/L and adsorbent range 10-150 g/L. The results showed that the equilibrium ion adsorption density did not correspond to a unique equilibrium ion concentration in liquid phase. Three adsorbate/adsorbent ratios, the equilibrium adsorption density, the ratio of equilibrium adsorbate concentration in liquid phase to adsorbent concentration, and the ratio of initial adsorbate concentration to adsorbent concentration, were found to be related with unique values in the tested range. Based on the assumption that the equilibrium state of a liquid/solid adsorption system is determined by four mutually related components: adsorbate in liquid phase, adsorbate in solid phase, uncovered adsorption site and covered adsorption site, and that the equilibrium chemical potentials of these components should be equalized, a new model was presented for describing ion adsorption isotherm in liquid/solid systems. The proposed model fit well the experimental data obtained from the examined samples.


Subject(s)
Aluminum Silicates/chemistry , Cadmium/chemistry , Cations/chemistry , Models, Chemical , Zinc/chemistry , Adsorption , China , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...