Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(1): 121-131, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38118121

ABSTRACT

The COVID-19 pandemic has resulted in huge amounts of face masks worldwide. However, there is a lack of awareness on the additives and their potential risk to aquatic ecosystems of face masks. To address this issue, the additives and their toxicity in 13 face masks (e.g., polypropylene, polyethylene, and polylactic acid) were determined using nontarget analysis and bioassays. A total of 826 organic additives including intermediates (14.8%), surfactants (9.3%), plasticizers (8.2%), and antioxidants (6.1%) were tentatively identified, with 213 compounds being assigned confidence levels of 1 and 2. Interestingly, polylactic acid masks contained more additives than most polypropylene or polyethylene masks. Among these additives, the concentration of tris(2-ethylhexyl) phosphate in masks was 9.4-978.2 ng/g with a 100% detection frequency. Furthermore, 13 metals such as zinc (up to 202.0 µg/g), copper (32.5 µg/g), and chromium (up to 5.7 µg/g) were detected in the face masks. The methanol extracts of the masks showed the developmental toxicity, swimming behavior, and/or endocrine disruption in embryos/larvae of Oryzias melastigma. The findings demonstrate that face masks contain various toxic additives to marine medaka, which deserves close attention to pollution by face masks.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Humans , Ecosystem , Masks , Pandemics , Polypropylenes , Polyethylenes
2.
Aquat Toxicol ; 261: 106635, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37478585

ABSTRACT

The issue of the additives leached from plastics has attracted widespread attention. More crucially, endocrine disruptor status for several leached additives has been established. However, little is known about the overall endocrine disrupting effects of aged plastic leachates. Therefore, the transcriptional responses of endocrine-related genes were assessed in the embryos of marine medaka (Oryzias melastigma), which were exposed to the leachates from aged plastics that were immersed into the simulated seawater (SW) or fish digest (FD). The results revealed that there was a great difference between the SW and FD leachates in the transcripts of endocrine-related genes. With the exception of cyp1a, all target genes had their transcripts potentially down-regulated by the FD leachates. Chgl (a biomarker for estrogens), pparß (related to lipid metabolism), and cyp19a (related to sexual differentiation and reproduction) transcripts tended to be repressed by the SW leachates, while pparα, pparγ and cyp1a (mediating metabolism of xenobiotics) transcripts were stimulated. In addition, a redundancy analysis was carried out to determine the relationship between the leached additives and the transcriptional changes. However, the additives only partially explained the variation in the transcripts of endocrine-related genes (24.8%), indicating that other leached additives may have an impact on target gene transcription. This study provided molecular evidence of the aged plastic leachates' endocrine disrupting effects. Exploring the primary factors that affect the transcriptional alterations would require more research.


Subject(s)
Endocrine Disruptors , Oryzias , Water Pollutants, Chemical , Animals , Plastics/toxicity , Oryzias/physiology , Endocrine Disruptors/toxicity , Endocrine Disruptors/metabolism , Water Pollutants, Chemical/toxicity , Estrogens/metabolism
3.
Aquat Toxicol ; 257: 106457, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36848693

ABSTRACT

Estrone (E1) is one of the predominant natural estrogens detected in aquatic environments, yet little is known about its effects on the endocrine system in fish. In this study, the sex ratio, secondary sexual characteristics, gonadal histology, and transcriptional levels of genes closely related to sex differentiation and hypothalamic-pituitary-gonadal-liver (HPGL) axis were assessed in western mosquitofish (Gambusia affinis) after a full life-cycle exposure to E1 (0, 25.4, 143, 740, and 4300 ng/L) for 119 days. The results showed that exposure to 4300 ng/L of E1 resulted in 100% female and inhibited the growth of females. Exposure to environmentally relevant concentrations of E1 (143 and 740 ng/L) led to obvious feminization of skeletons and anal fins in males. Exposure to 740 and 4300 ng/L of E1 increased the proportion of mature spermatocytes in females, and exposure to 143 and 740 ng/L decreased the proportion of mature spermatocytes in males. Moreover, the transcripts of genes related to sex differentiation and HPGL axis were changed in the E1-exposed adult fish and embryos inside females. This study has provided valuable data on the endocrine disruption effects of E1 at environmentally relevant concentrations in G. affinis.


Subject(s)
Cyprinodontiformes , Water Pollutants, Chemical , Male , Animals , Female , Estrone/toxicity , Water Pollutants, Chemical/toxicity , Endocrine System , Gonads
4.
Environ Sci Technol ; 57(8): 3280-3290, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36795899

ABSTRACT

Bisphenol 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl] phenol (BPTMC), as a substitute for bisphenol A, has been detected in environments. However, the ecotoxicological data of BPTMC are extremely scarce. Here, the lethality, developmental toxicity, locomotor behavior, and estrogenic activity of BPTMC at different concentrations (0.25-2000 µg/L) in marine medaka (Oryzias melastigma) embryos were examined. In addition, the in silico binding potentials of O. melastigma estrogen receptors (omEsrs) with BPTMC were assessed by docking study. Low-concentration BPTMC exposure (including an environmentally relevant concentration, 0.25 µg/L) resulted in stimulating effects, including hatching rate, heart rate, malformation rate, and swimming velocity. However, elevated concentrations of BPTMC led to an inflammatory response, changed heart rate and swimming velocity in the embryos and larvae. In the meantime, BPTMC (including 0.25 µg/L) altered the concentrations of estrogen receptor, vitellogenin, and endogenous 17 ß-estradiol as well as the transcriptional levels of estrogen-responsive genes in the embryos or/and larvae. Furthermore, elaborate tertiary structures of omEsrs were built by ab initio modeling, and BPTMC exerted potent binding potential with three omEsrs with -47.23, -49.23, and -50.30 kJ/mol for Esr1, Esr2a, and Esr2b, respectively. This work suggests that BPTMC has potent toxicity and estrogenic effects in O. melastigma.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Oryzias/physiology , Estrone/metabolism , Estrogens/metabolism , Phenols/toxicity , Receptors, Estrogen/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
5.
J Hazard Mater ; 446: 130700, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36592560

ABSTRACT

Marine plastic pollution has garnered substantial attention, but the potential endocrine disrupting effects of plastic leachates in marine organisms remain unclear. In this study, the larvae of marine medaka (Oryzias melastigma) were exposed to the leachates from virgin and aged plastics soaked in simulated seawater and fish digest for 3 days. The concentrations of vitellogenin (VTG), estradiol (E2), and 11-ketotestosterone (11-KT), as well as the transcripts of endocrine-related genes were measured in the larvae. The results revealed that endogenous E2 was more sensitive to plastic leachates than VTG and 11-KT, which was significantly affected by 26.7 % of all plastic leachates. Among all genes, estrogen receptor α was impacted mostly, being up-regulated by 53.3 % of leachates from aged plastics. The comparative results demonstrated that the leachates from plastics with different statuses caused a greater difference than those from plastics in different simulated media, and the leachates from aged plastics resulted in higher endocrine disrupting effects than those from virgin plastics. In addition, seven leached additives (plasticizers and flame retardants) could explain 25.6 % of the hormonal effects using redundancy analysis, indicating that other additives in the plastic leachates can also play important roles in regulating the endocrine system of O. melastigma larvae.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Plastics/toxicity , Oryzias/genetics , Larva , Estradiol/toxicity , Estradiol/analysis , Endocrine System , Vitellogenins/genetics , Water Pollutants, Chemical/analysis
6.
Water Res ; 209: 117892, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34861434

ABSTRACT

In recent years, the ecological risks of plastics to marine environments and organisms have attracted increasing attention, especially the leachates from plastics. However, a comprehensive knowledge about the leaching characteristics and subsequent toxicological effects of leachates is still sparse. In this study, 15 different plastic products were immersed in simulated seawater and fish digest for 16 h. The leachates were analyzed through non-target and target analyses and their toxicological signatures were assessed by bioassays. In total, 240 additives were identified from the plastic leachates, among which plasticizers represented the most (16.7%), followed by antioxidants (8.7%) and flame retardants (7.1%). Approximately 40% of plastic leachates exhibited significant inhibitory effects on the bioluminescence using a recombinant luminescent assay. In addition, both the hyperactive and hypoactive behaviors were displayed in the larvae of marine medaka (Oryzias melastigma) exposed to some plastic leachates. In general, the number and amount of identified compounds under simulated fish digest were less than those under simulated seawater. However, the simulated fish digest leachates triggered higher toxicity. Redundancy analysis demonstrated that identified additives did not adequately explain the toxicological effects. Future research should focus on the identification of more additives in the plastic leachates and their potential ecological risks.

SELECTION OF CITATIONS
SEARCH DETAIL
...