Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 241: 115990, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38280236

ABSTRACT

The tuberous roots of Ophiopogon japonicus and Liriope spicata are used for the same therapeutic purpose in traditional Chinese medicine and are collectively referred to as maidong medicine. Interestingly, it was observed that the price of tuberous roots varies depending on their location on the plant, and fibrous roots are usually discarded post-harvest. Mislabeling might be of concern due to similarities in morphological features between the two species. Moreover, paclobutrazol has been observed to be heavily applied during the production, and therefore might be of health concern. Overall, maidong might suffer from quality inconsistencies while its metabolomic complexity is influenced by growing region and cultivation practices, botanical species, and plant parts. To address these challenges, this study employed High-Performance Thin Layer Chromatography (HPTLC) approach, in which sample preparation and derivatization procedure were optimized to enable to capture more detailed and comprehensive metabolomic fingerprints. By integrating with rTLC algorithm and Multivariate Data Analysis (MVDA), an improved quality assessment was achieved. Samples were collected from four production regions and supplemented with commercial products from markets. The optimized HPTLC analysis recognized species- and region-specific metabolomic patterns of maidong, uncovering a 4% of mislabelled cases. Moreover, findings highlight the underexplored therapeutic potential of fibrous roots, and comparable therapeutic efficacy between different root types. Additionally, complemented by Liquid Chromatography-Mass Spectrometry (LC-MS) for paclobutrazol residue evaluation, 24.66% of the commercial maidong samples surpassed maximum residue limits of paclobutrazol, raising safety concerns. This research represents a significant analytical advancement, offering a robust, cost-effective, and comprehensive method for maidong quality control, and paving the way for more strict residue regulation and updates to herbal pharmacopoeias and monographs.


Subject(s)
Liriope Plant , Ophiopogon , Ophiopogon/chemistry , Chromatography, Thin Layer , Liriope Plant/chemistry , Metabolomics , Quality Control
2.
J Ethnopharmacol ; 291: 115148, 2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35240238

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aconitum carmichaelii, belonging to the Ranunculaceae family, is a widely used traditional herbal plant in Asian countries, especially in China. The lateral ("Fuzi") and mother ("Chuanwu") roots are the two main plant parts used in Traditional Chinese Medicine (TCM), where they are used in the treatment of acute myocardial infarction, heart failure, rheumatoid arthritis, and as analgesics. AIM OF THE STUDY: In order to further guide the research direction and application of A. carmichaelii, this study aims to give a systematic and in-depth overview on the phytochemical and pharmacological studies of non-alkaloid natural products with focus on polysaccharides and phenolic compounds. MATERIALS AND METHODS: A comprehensive search in the literature was conducted based on the databases Google Scholar, SciFinder (American Chemical Society), Springer Link, PubMed Science, Science Direct and China National Knowledge Internet, Wanfang Data, in addition to books, doctoral and master's dissertations, and official website. The main keywords were: "Aconitum carmichaelii", "Aconiti Lateralis Radix Praeparata", "Fuzi", "Chuanwu", "Aconiti Radix", "monkshood" and "Bushi". RESULTS: A. carmichaelii is known for the use of its different root parts, including "Fuzi" and "Chuanwu". Different types of polysaccharides, both neutral and acidic, and 39 phenolic compounds like flavonoids, phenylpropanoids, lignans, neolignans, and benzoic acid derivatives have been isolated and identified from the roots. Pharmacological studies of the isolated polysaccharides have demonstrated various biological effects such as hypoglycemic, hypolipidemic, cardiovascular, immunomodulatory, anti-tumor, and neuropharmacological activities. Studies on pharmacological effects of the phenolic compounds isolated from the roots are however limited. CONCLUSIONS: This review shows that polysaccharides could be one of the active components in the roots of A. carmichaelii, and they are promising for future applications due to their pharmacological properties. In addition, polysaccharides are generally non-toxic, biocompatible, and biodegradable. This review also sheds light on new research directions for A. carmichaelii. A more detailed structural characterization of polysaccharides from different root parts of A. carmichaelii, and their structure-activity relationships are required. Additionally, their pharmacological properties as immunomodulators in the intestinal system should be investigated. Further, more knowledge about the pharmacological effects and molecular mechanisms of the phenolic compounds that have been identified are needed.


Subject(s)
Aconitum , Drugs, Chinese Herbal , Aconitum/chemistry , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Phenols/analysis , Phenols/pharmacology , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Roots/chemistry , Polysaccharides/analysis , Polysaccharides/pharmacology
3.
Front Pharmacol ; 12: 769929, 2021.
Article in English | MEDLINE | ID: mdl-34925027

ABSTRACT

The closely related genera Liriope and Ophiopogon (Asparagaceae), collectively known in English as liriopogons, have similar therapeutic uses in treating cough, rheumatoid arthritis, and cleaning heat. The main aim of this review is to understand the current phytochemical and pharmacological knowledge including an assessment of the quality of the scientific evidence. A literature search was conducted in line with PRISMA guidelines, by retrieving available information up to 2020 from five online resources. The bioactive metabolites of liriopogons include steroidal saponins, flavonoids, polysaccharides, organic acids, phenols. Cardiovascular protective, anti-inflammatory, anti-diabetic, anti-oxidant, anti-cancer, neuroprotective, anti-viral, anti-acute myeloid leukemia and hepatoprotective effects have been at the center of attention. From a toxicological perspective Ophiopogon japonicus seems to be safe. Some problems with the quality of the pharmacological evidence stand out including the application of excessive dose level and methodological problems in the design. Additionally, a reasonable link between local/traditional uses and pharmacological assessment is often vague or not reflected in the text. Future researches on liriopogons are required to use rigorous scientific approaches in research on evidence-based natural products for the future benefits of patients.

4.
Carbohydr Polym ; 172: 306-314, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28606539

ABSTRACT

Two polysaccharides, GCP-I-I and GCP-II-I, were obtained from 100°C water extracts of Gentiana crassicaulis roots by DEAE anion exchange chromatography and gel filtration. The results from methanolysis, methylation, FT-IR and NMR, indicated that these two fractions are typical pectic polysaccharides, with HG and RG-I regions and AG-I/AG-II side chains, and some of the galacturonic acid units of fraction GCP-I-I were methyl esterified. Fractions GCP-I-I and GCP-II-I, both exhibited potent complement fixation, and fraction GCP-I-I was more potent than positive control BPII. The higher complement fixation activity obtained in fraction GCP-I-I may be due to the higher Mw and/or higher amount of AG-II present in fraction GCP-I-I than fraction GCP-II-I. The polysaccharides from G. crassicaulis could be used as a potential natural immunomodulator.


Subject(s)
Erythrocytes/drug effects , Gentiana/chemistry , Plant Roots/chemistry , Polysaccharides/pharmacology , Animals , Chromatography, Gel , Complement Fixation Tests , Polysaccharides/isolation & purification , Sheep , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...