Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 439: 137810, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38043275

ABSTRACT

Aroma is one of the most outstanding quality characteristics of Qingzhuan tea (QZT), but its formation is still unclear. Thus, the volatile organic compounds (VOCs) during the whole processing of QZT were investigated by headspace solid-phase microextraction/gas chromatography-mass spectrometry. Based on 144 identified VOCs, the results showed that de-enzyming, sun-drying, and piling fermentation were the key processes of QZT aroma formation. Furtherly, 42 differential VOCs (VIP > 1.0 and p < 0.05) and 16 key VOCs (rOAV > 1.0 and/or ROAV > 1.0) were screened. Especially, sulcatone and ß-ionone (rOAV > 100 and ROAV > 10) were considered the most important contributors to the aroma of QZT. The metabolisms of key VOCs were mainly involved in oxidative degradation of fatty acids, degradation of carotenoids, and methylation of gallic acid. This study could help to more comprehensively understand the aroma formation in QZT processing at an industrial scale.


Subject(s)
Odorants , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , Gas Chromatography-Mass Spectrometry/methods , Carotenoids/analysis , Fermentation , Volatile Organic Compounds/analysis , Solid Phase Microextraction/methods
2.
Int J Food Microbiol ; 382: 109937, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36155261

ABSTRACT

With the aim to reveal the microbial community succession at various temperatures in the fermentation of Qingzhuan tea (QZT), the Illumina NovaSeq sequencing was carried out to analyze bacterial and fungal community structure in tea samples collected from the fermentation set at various temperatures, i.e., 25 °C, 30 °C, 37 °C, 45 °C, 55 °C, and room temperature. The results showed that fermentation temperature profoundly affected the microbial community succession in the QZT fermentation. Microbial richness and community diversity decreased along with the increase of fermentation temperature. Despite the differences between microorganisms and their metabolic types among various temperatures, most bacteria and fungi showed positive correlations at the genera level. Klebsiella, Paenibacillus, Cohnella, and Pantoea were confirmed as the main bacterial genera, and Aspergillus and Cyberlindnera were the main fungal genera in QZT fermentation. The microbial genera (i.e. Aspergillus, Rhizomucor, Thermomyces, Ralstonia, Castellaniella, and Vibrio) were positively correlated with fermentation temperature (P < 0.05), while Klebsiella, Paenibacillus, and Aspergillus had good adaptability at different temperatures. Conversely, Pantoea and Cyberlindnera were only suitable for low temperature (≤37 °C) growth, and Thermomyces was only suitable for high temperature (>37 °C) growth. Aspergillus had a significant positive correlation with tea aroma quality (r = 0.64, p < 0.05). This study would help to understand the formation mechanism of QZT from microflora perspective.


Subject(s)
Microbiota , Aspergillus , Bacteria , Fermentation , Tea/microbiology , Temperature
3.
Food Chem ; 342: 128175, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33097332

ABSTRACT

Although aged fragrance is the most outstanding quality characteristic of dark tea, its formation still is not much clear. Thus, the volatiles of Qingzhuan tea (QZT) during the whole post-fermentation process were investigated at an industrial scale. The results showed that most of volatiles increased during pile-fermentation of QZT and weakened during aging storage, but some new volatiles were produced through aging storage. Hexanal, (E)-2-hexenal, (E)-2-decenal, 2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde, heptanal, (E)-2-octenal, (R)-5,6,7,7a-tetrahydro-4,4,7a-trimethyl-2(4H)-benzofuranone, ionone, 2-heptanone, 3-ethyl-4-methyl-1H-pyrrole-2,5-dione, (R,S)-5-ethyl-6-methyl-3-hepten-2-one, cis-5-ethenyltetrahydro-5-trimethyl-2-furanmethanol, and linalool generated by pile-fermentation should be the basic volatiles of aged fragrance in QZT, and 4-(2,4,4-trimethyl-cyclohexa-1,5-dienyl)-but-3-en-2-one, 6-methyl-5-heptene-2-one, safranal, guaiene, trans-2-(2-propynyloxy)-cyclohexanol, nonanal, and 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-butanone formed during aging storage should be the transformed volatiles of aged fragrance in QZT, which together constitute the characteristic components of aged fragrance. Notably, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-butanone, 6-methyl-5-heptene-2-one, and safranal were selected as the key volatiles of QZT. These results contribute to understand better the formation of agedfragrance in dark tea.


Subject(s)
Teas, Herbal/analysis , Volatile Organic Compounds/analysis , Cluster Analysis , Discriminant Analysis , Fermentation , Food Storage , Gas Chromatography-Mass Spectrometry , Least-Squares Analysis , Solid Phase Microextraction , Time Factors , Volatile Organic Compounds/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...