Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 386: 110782, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37884181

ABSTRACT

Fine particulate matter (PM2.5) has attracted increasing attention due to its health-threatening effects. Although numerous studies have investigated the impact of PM2.5 on lung injuries, the specific mechanisms underlying the damage to the air-blood barrier after exposure to PM2.5 remain unclear. In this study, we established an in vitro co-culture system using lung epithelial cells and capillary endothelial cells. Our findings indicated that the tight junction (TJ) proteins were up-regulated in the co-cultured system compared to the monolayer-cultured cells, suggesting the establishment of a more closely connected in vitro system. Following exposure to PM2.5, we observed damage to the air-blood barrier in vitro. Concurrently, PM2.5 exposure induced significant oxidative stress and activated the NLRP3 inflammasome-mediated pyroptosis pathway. When oxidative stress was inhibited, we observed a decrease in pyroptosis and an increase in TJ protein levels. Additionally, disulfiram reversed the adverse effects of PM2.5, effectively suppressing pyroptosis and ameliorating air-blood barrier dysfunction. Our results indicate that the oxidative stress-pyroptosis pathway plays a critical role in the disruption of the air-blood barrier induced by PM2.5 exposure. Disulfiram may represent a promising therapeutic option for mitigating PM2.5-related lung damage.


Subject(s)
Endothelial Cells , Pyroptosis , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , Blood-Air Barrier/metabolism , Disulfiram , Particulate Matter/toxicity
2.
Ecotoxicol Environ Saf ; 254: 114699, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36889212

ABSTRACT

Exposure to particulate matters with diameters below 2.5 µm (PM2.5) is considered a major risk factor for cardiovascular diseases (CVDs). The closest associations between PM2.5 and CVDs have been observed in hyperbetalipoproteinemia cases, although the detailed underpinning mechanism remains undefined. In this work, hyperlipidemic mice and H9C2 cells were used to examine the effects of PM2.5 on myocardial injury and their underlying mechanisms. The results revealed that PM2.5 exposure caused severe myocardial damage in the high-fat mouse model. Oxidative stress and pyroptosis were also observed along with myocardial injury. After inhibiting pyroptosis with disulfiram (DSF), the level of pyroptosis was effectively reduced as well as myocardial injury, suggesting that PM2.5 induced the pyroptosis pathway and further caused myocardial injury and cell death. Afterwards, by suppressing PM2.5-induced oxidative stress with N-acetyl-L-cysteine (NAC), myocardial injury was markedly ameliorated, and the upregulation of pyroptosis markers was reversed, which indicated that PM2.5-pyroptosis was also improved. Taken together, this study revealed that PM2.5 induce myocardial injury through the ROS-pyroptosis signaling pathway in hyperlipidemia mice models, providing a potential approach for clinical interventions.


Subject(s)
Pyroptosis , Signal Transduction , Mice , Animals , Reactive Oxygen Species/metabolism , Oxidative Stress , Particulate Matter/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...