Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 142: 109114, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37758097

ABSTRACT

Abalone Haliotis discus hannai (initial weight: 38.79 ± 0.70 g) was used as the experimental animal in a 105-day feeding trial to investigate the influence of dietary bile acids levels on the growth, anti-oxidation, immune response and intestinal microbiota. Six isonitrogenous and isolipidic diets were prepared by adding 0 (control group), 15, 30, 60, 120 and 240 mg/kg of bile acids, respectively (named BA0, BA15, BA30, BA60, BA120 and BA240, respectively). It was found that survival of abalone between groups had no significant difference (P > 0.05). Compared to the control, significant improvements in weight gain rate (WGR) were observed in the groups of BA30 and BA60 (P < 0.05). Based on WGR, the broken line regression model analysis showed that the optimum demand for dietary bile acids for abalone was 35.47 mg/kg. Dietary bile acids increased the total anti-oxidative capacity and activities of catalase, superoxide dismutase, lysozyme and alkaline phosphatase, meanwhile decreased the content of malondialdehyde, alanine aminotransferase and aspartate aminotransferase activities in the cell-free hemolymph (P < 0.05). When bile acids were added to the diets, mRNA levels of genes related to pro-inflammatory factors and apoptosis in the digestive gland were down-regulated (P < 0.05). In contrast, the expression of genes related to anti-oxidation was significantly up-regulated (P < 0.05). The Firmicutes, Actinobacteriota and Proteobacteria were the most abundant phyla in intestine. And dietary bile acids significantly decreased the abundance of Actinobacteria and increased the abundance of Firmicutes (P < 0.05). In conclusion, supplementation of dietary bile acids within 120 mg/kg significantly increased the growth of abalone. The 34.62 mg/kg of dietary bile acids significantly increased the anti-oxidative capacity of abalone. Appropriate levels of dietary bile acids (34.62-61.75 mg/kg) promote the immunity of abalone. Application of appropriate levels of bile acids in diets (34.62 mg/kg) changed the intestinal microbiota and promoted the intestinal health of abalone.


Subject(s)
Gastrointestinal Microbiome , Gastropoda , Animals , Diet/veterinary , Intestines , Oxidation-Reduction
2.
Fish Shellfish Immunol ; 130: 9-21, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36084886

ABSTRACT

In addition to eliminating most of the anti-nutritional factors in soybean meal, enzyme-treated soybean meal (ESBM) can also increase the proportion of small peptides. It was found that ESBM can replace fish meal (FM) either partially or completely in diets for some fish and shrimp species. In the present study, the effects of replacing dietary FM with ESBM on growth performance, intestinal microbiota, immunity and mTOR pathway in abalone Haliotis discus hannai (initial weight: 16.75 ± 0.09 g) were investigated after a 100-day feeding trial. Five experimental diets were designed to replace 0%, 25%, 50%, 75% and 100% of dietary FM by ESBM, which were named as ESBM0 (control), ESBM25, ESBM50, ESBM75 and ESBM100, respectively. Results showed that ESBM could replace up to 75% of FM in the diet without significant effect on the weight gain rate (WGR, 118.05%-124.16%) of abalone. The increasing dietary ESBM levels significantly decreased the trypsin activity from 418.52 to 286.52 U/mg protein in the digestive gland. No significant differences in the contents of total cholesterol (T-CHO), ammonia (BLA) and malondialdehyde (MDA) in cell-free hemolymph were observed among the groups with replacement levels of dietary FM by ESBM from 0% to 75%. Excessive replacement level of FM with ESBM (ESBM100) significantly increased the MDA content (2.33 nmol/mg prot.) and pro-inflammatory-related gene expression in digestive gland. Compared with the control group, the mTOR pathway in muscle was significantly upregulated in the ESBM75 group. The digestive gland in the ESBM100 group contained more golden refractile spherules than those in the other groups. The abundance of intestinal microbes such as Halomonas, Zobellella and Bacillus was decreased in the ESBM100 group. In conclusion, up to 75% of replacement of dietary FM by ESBM had no negative effects on the growth performance, intestinal microbiota, immunity and mTOR pathway of abalone.


Subject(s)
Gastrointestinal Microbiome , Gastropoda , Ammonia/pharmacology , Animal Feed/analysis , Animals , Cholesterol , Diet/veterinary , Malondialdehyde , Glycine max , TOR Serine-Threonine Kinases/genetics , Trypsin
3.
Fish Shellfish Immunol ; 129: 231-242, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36067907

ABSTRACT

The codon-optimized anti-lipopolysaccharide factor (ALF) sequence was introduced into pPICZαA vector and transformed into Pichia pastoris GS115. The recombinant ALF yeast supernatant (rALF-mix) was freeze-dried and evaluated as a feed additive for Litopenaeus vannamei. It was found by antibacterial activity test in vitro that the rALF-mix had antibacterial activity under different pH and temperature conditions. The 0, 0.00375%, 0.0075%, 0.015%, 0.03% and 0.06% of rALF-mix were added respectively to make the six experimental diets. After a 10-week feeding trial with shrimps (2.36 ± 0.02 g), it was found that the weight gain rate (WGR) and protein efficiency ratio (PER) of shrimp in the groups with 0.0075%, 0.015% and 0.03% of dietary rALF-mix supplementation were significantly higher than those in the control group (P < 0.05). Dietary rALF-mix supplementation significantly increased the total haemocyte count, respiratory burst, phagocytic activity, total anti-oxidative capacity (T-AOC), phenol oxidase activity, nitric oxide synthase activity, lysozyme (LYZ) activity, serum antibacterial capacity in the hemolymph and the T-AOC, LYZ in the hepatopancreas of shrimps (P < 0.05). The malondialdehyde contents in hemolymph and hepatopancreas were significantly decreased (P < 0.05). Meanwhile, the expression levels of toll, immune deficiency, heat shock protein 70, crustin and lipopolysaccharide-ß-glucan binding protein in the gill of shrimps were significantly increased (P < 0.05). After the challenge test, it was showed that dietary rALF-mix supplementation significantly improved the resistance of L. vannamei to Vibrio parahaemolyticus (P < 0.05). In conclusion, the rALF-mix can be used as a functional feed additive to improve the growth, immunity and disease resistance of shrimp. Based on the quadratic regression analysis for WGR, the optimal supplemental level of rALF-mix in diet for shrimp was estimated to be 0.02813%.


Subject(s)
Animal Feed , Penaeidae , Animal Feed/analysis , Animals , Anti-Bacterial Agents/pharmacology , Diet/veterinary , Dietary Supplements/analysis , Disease Resistance , HSP70 Heat-Shock Proteins , Immunity, Innate/genetics , Lipopolysaccharides/pharmacology , Malondialdehyde , Monophenol Monooxygenase , Muramidase/metabolism , Nitric Oxide Synthase , Saccharomycetales
SELECTION OF CITATIONS
SEARCH DETAIL
...