Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Placenta ; 140: 90-99, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37549442

ABSTRACT

INTRODUCTION: To characterize early-gestation changes in placental structure, perfusion, and oxygenation in the context of ischemic placental disease (IPD) as a composite outcome and in individual sub-groups. METHODS: In a single-center prospective cohort study, 199 women were recruited from antenatal clinics between February 2017 and February 2019. Maternal magnetic resonance imaging (MRI) studies of the placenta were temporally conducted at two timepoints: 14-16 weeks gestational age (GA) and 19-24 weeks GA. The pregnancy was monitored via four additional study visits, including at delivery. Placental volume, perfusion, and oxygenation were assessed at both MRI timepoints. The primary outcome was defined as pregnancy complicated by IPD, with group assignment confirmed after delivery. RESULTS: In early gestation, mothers with IPD who subsequently developed fetal growth restriction (FGR) and/or delivered small-for gestational age (SGA) infants showed significantly decreased MRI indices of placental volume, perfusion, and oxygenation compared to controls. The prediction of FGR or SGA by multiple logistic regression using placental volume, perfusion, and oxygenation revealed receiver operator characteristic curves with areas under the curve of 0.81 (Positive predictive value (PPV) = 0.84, negative predictive value (NPV) = 0.75) at 14-16 weeks GA and 0.66 (PPV = 0.78, NPV = 0.60) at 19-24 weeks GA. DISCUSSION: MRI indices showing decreased placental volume, perfusion and oxygenation in early pregnancy were associated with subsequent onset of IPD, with the greatest deviation evident in subjects with FGR and/or SGA. These early-gestation MRI changes may be predictive of the subsequent development of FGR and/or SGA.


Subject(s)
Placenta Diseases , Placenta , Infant, Newborn , Pregnancy , Female , Humans , Infant , Placenta/diagnostic imaging , Prospective Studies , Infant, Small for Gestational Age , Fetal Growth Retardation/diagnostic imaging , Fetal Growth Retardation/etiology , Placenta Diseases/diagnostic imaging
2.
Am J Perinatol ; 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36241211

ABSTRACT

OBJECTIVE: The aim of Placental Assessment in Response to Environmental Pollution Study (PARENTs) was to determine whether imaging of the placenta by novel multiparametric magnetic resonance imaging (MRI) techniques in early pregnancy could help predict adverse pregnancy outcomes (APOs) due to ischemic placental disease (IPD). Additionally, we sought to determine maternal characteristics and environmental risk factors that contribute to IPD and secondary APOs. STUDY DESIGN: Potential patients in their first trimester of pregnancy, who agreed to MRI of the placenta and measures of assessment of environmental pollution, were recruited into PARENTs, a prospective population-based cohort study. Participants were seen at three study visits during pregnancy and again at their delivery from 2015 to 2019. We collected data from interviews, chart abstractions, and imaging. Maternal biospecimens (serum, plasma, and urine) at antepartum study visits and delivery specimens (placenta, cord, and maternal blood) were collected, processed, and stored. The primary outcome was a composite of IPD, which included any of the following: placental abruption, hypertensive disease of pregnancy, fetal growth restriction, or a newborn of small for gestational age. RESULTS: In this pilot cohort, of the 190 patients who completed pregnancy to viable delivery, 50 (26%) developed IPD. Among demographic characteristics, having a history of prior IPD in multiparous women was associated with the development of IPD. In the multiple novel perfusion measurements taken of the in vivo placenta using MRI, decreased high placental blood flow (mL/100 g/min) in early pregnancy (between 14 and 16 weeks) was found to be significantly associated with the later development of IPD. CONCLUSION: Successful recruitment of the PARENTs prospective cohort demonstrated the feasibility and acceptability of the use of MRI in human pregnancy to study the placenta in vivo and at the same time collect environmental exposure data. Analysis is ongoing and we hope these methods will assist researchers in the design of prospective imaging studies of pregnancy. KEY POINTS: · MRI was acceptable and feasible for the study of the human placenta in vivo.. · Functional imaging of the placenta by MRI showed a significant decrease in high placental blood flow.. · Measures of environmental exposures are further being analyzed to predict IPD..

3.
PLoS One ; 17(5): e0267564, 2022.
Article in English | MEDLINE | ID: mdl-35613088

ABSTRACT

We undertook a prospective temporal study collecting blood samples from consenting pregnant women, to test the hypothesis that circulating extracellular vesicles (EVs) carrying specific non-coding microRNA signatures can underlie gestational diabetes mellitus (GDM). To test this hypothesis, miRNA cargo of isolated and characterized EVs revealed contributions from the placenta and differential expression at all three trimesters and at delivery between pregnant and non-pregnant states. Many miRNAs originate from the placental-specific chromosome 19 microRNA cluster (19MC) and chromosome 14 microRNA cluster (14MC). Further a positive correlation emerged between third trimester and at delivery EVs containing miRNAs and those expressed by the corresponding post-parturient placentas (R value = 0.63 to 0.69, p value = 2.2X10-16), in normal and GDM. In addition, distinct differences at all trimesters emerged between women who subsequently developed GDM. Analysis by logistic regression with leave-one-out-cross validation revealed the optimal combination of miRNAs using all the circulating miRNAs (miR-92a-3p, miR-192-5p, miR-451a, miR-122-5p), or using only the differentially expressed miRNAs (has-miR-92a-3p, hsa-miR-92b-3p, hsa-miR-100-5p and hsa-miR-125a-3p) in GDM during the first trimester. As an initial step, both sets of miRNAs demonstrated a predictive probability with an area under the curve of 0.95 to 0.96. These miRNAs targeted genes involved in cell metabolism, proliferation and immune tolerance. In particular genes of the P-I-3-Kinase, FOXO, insulin signaling and glucogenic pathways were targeted, suggestive of placental connectivity with various maternal organs/cells, altering physiology along with pathogenic mechanisms underlying the subsequent development of GDM. We conclude that circulating EVs originating from the placenta with their miRNA cargo communicate and regulate signaling pathways in maternal organs, thereby predetermining development of GDM.


Subject(s)
Diabetes, Gestational , Extracellular Vesicles , MicroRNAs , Diabetes, Gestational/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Pregnancy , Prospective Studies
4.
PLoS One ; 13(3): e0193583, 2018.
Article in English | MEDLINE | ID: mdl-29590129

ABSTRACT

BACKGROUND: Intrauterine growth restriction (IUGR) results from a lack of nutrients transferred to the developing fetus, particularly oxygen and glucose. Increased expression of the cytoprotective mitochondrial peptide, humanin (HN), and the glucose transporter 8, GLUT8, has been reported under conditions of hypoxic stress. However, the presence and cellular localization of HN and GLUT8 in IUGR-related placental pathology remain unexplored. Thus, we undertook this study to investigate placental expression of HN and GLUT8 in IUGR-affected versus normal pregnancies. RESULTS: We found 1) increased HN expression in human IUGR-affected pregnancies on the maternal aspect of the placenta (extravillous trophoblastic (EVT) cytoplasm) compared to control (i.e. appropriate for gestational age) pregnancies, and a concomitant increase in GLUT8 expression in the same compartment, 2) HN and GLUT8 showed a protein-protein interaction by co-immunoprecipitation, 3) elevated HN and GLUT8 levels in vitro under simulated hypoxia in human EVT cells, HTR8/SVneo, and 4) increased HN expression but attenuated GLUT8 expression in vitro under serum deprivation in HTR8/SVneo cells. CONCLUSIONS: There was elevated HN expression with cytoplasmic localization to EVTs on the maternal aspect of the human placenta affected by IUGR, also associated with increased GLUT8 expression. We found that while hypoxia increased both HN and GLUT8, serum deprivation increased HN expression alone. Also, a protein-protein interaction between HN and GLUT8 suggests that their interaction may fulfill a biologic role that requires interdependency. Future investigations delineating molecular interactions between these proteins are required to fully uncover their role in IUGR-affected pregnancies.


Subject(s)
Fetal Growth Retardation/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Placenta/metabolism , Adult , Cytoplasm/metabolism , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Glucose Transport Proteins, Facilitative/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Placenta/pathology , Pregnancy , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trophoblasts/pathology , Up-Regulation
5.
J Clin Endocrinol Metab ; 102(4): 1261-1269, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28388726

ABSTRACT

Context: Biochemical weakening of the amnion is a major factor preceding preterm premature rupture of membranes (PPROMs), leading to preterm birth. Activation of matrix metalloproteinases (MMPs) is known to play a key role in collagen degradation of the amnion; however, epithelial to mesenchymal transition (EMT) that is also induced by MMP activation has not been investigated as a mechanism for amnion weakening. Objective: To measure amniotic EMT associated with vaginal delivery (VD) compared with unlabored cesarean sections (CSs), and to assess changes in amniotic mechanical strength with pharmacologic inhibitors and inducers of EMT, thus testing the hypothesis that EMT is a key biochemical event that promotes amniotic rupture. Findings: (1) Amnions taken from VD contained a significantly increased number of mesenchymal cells relative to epithelial cells compared with unlabored CS by fluorescence-activated cell sorting analysis (60% vs 10%); (2) tumor necrosis factor (TNF)-α stimulation of amniotic epithelial cells increased expression of the mesenchymal marker vimentin after 2 days; (3) EMT inhibitor, etodolac, significantly increased the time and mechanical pressure required to rupture the amnion; and (4) TNF-α and another pharmacologic EMT inducer, ethacridine, decreased the time and mechanical pressure required for amnion rupture, further confirming that the mesenchymal phenotype significantly weakens the amnion. Conclusions: This work demonstrated amniotic cell EMT was associated with labor and EMT decreased the tensile strength of the amnion. These findings suggest a role for EMT in the pathophysiology of PPROM and may provide a basis for development of therapies to prevent preterm labor.


Subject(s)
Amnion/drug effects , Epithelial-Mesenchymal Transition/drug effects , Fetal Membranes, Premature Rupture/metabolism , Tensile Strength/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Amnion/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Etodolac/pharmacology , Female , Humans , Matrix Metalloproteinases/metabolism , Pregnancy
6.
PLoS One ; 7(10): e47952, 2012.
Article in English | MEDLINE | ID: mdl-23110142

ABSTRACT

Using mice that lack recombination activating gene-2 (Rag2), we have found that bone marrow-derived plasmacytoid dendritic cells (pDCs) as main producers of interferon-α (IFNα) require Rag2 for normal development. This is a novel function for Rag2, whose classical role is to initiate B and T cell development. Here we showed that a population of common progenitor cells in the mouse bone marrow possessed the potential to become either B cells or pDCs upon appropriate stimulations, and the lack of Rag2 hindered the development of both types of progeny cells. A closer look at pDCs revealed that Rag2⁻/⁻ pDCs expressed a high level of Ly6C and were defective at producing IFNα in response to CpG, a ligand for toll-like receptor 9. This phenotype was not shared by Rag1⁻/⁻ pDCs. The induction of CCR7, CD40 and CD86 with CpG, however, was normal in Rag2⁻/⁻ pDCs. In addition, Rag2⁻/⁻ pDCs retained the function to promote antibody class switching and plasma cell formation through producing IL-6. Further analysis showed that interferon regulatory factor-8, a transcription factor important for both IFNα induction and pDC development, was dysregulated in pDCs lacking Rag2. These results indicate that the generation of interferon response in pDCs requires Rag2 and suggest the lymphoid origin of bone marrow-derived pDCs.


Subject(s)
DNA-Binding Proteins/metabolism , Dendritic Cells/metabolism , Interferon-alpha/metabolism , Toll-Like Receptor 9/metabolism , Animals , Antigens, CD/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , B7-2 Antigen/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , CD40 Antigens/metabolism , Cells, Cultured , DNA-Binding Proteins/genetics , Dendritic Cells/drug effects , Flow Cytometry , Gene Expression/drug effects , Immunophenotyping , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Oligodeoxyribonucleotides/pharmacology , Receptors, CCR7/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptor 9/agonists
7.
PLoS Pathog ; 6(12): e1001225, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21187894

ABSTRACT

We previously showed that broadly neutralizing anti-HIV-1 antibody 2G12 (human IgG1) naturally forms dimers that are more potent than monomeric 2G12 in in vitro neutralization of various strains of HIV-1. In this study, we have investigated the protective effects of monomeric versus dimeric 2G12 against HIV-1 infection in vivo using a humanized mouse model. Our results showed that passively transferred, purified 2G12 dimer is more potent than 2G12 monomer at preventing CD4 T cell loss and suppressing the increase of viral load following HIV-1 infection of humanized mice. Using humanized mice bearing IgG "backpack" tumors that provided 2G12 antibodies continuously, we found that a sustained dimer concentration of 5-25 µg/ml during the course of infection provides effective protection against HIV-1. Importantly, 2G12 dimer at this concentration does not favor mutations of the HIV-1 envelope that would cause the virus to completely escape 2G12 neutralization. We have therefore identified dimeric 2G12 as a potent prophylactic reagent against HIV-1 in vivo, which could be used as part of an antibody cocktail to prevent HIV-1 infection.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/therapeutic use , HIV Infections/prevention & control , HIV-1/immunology , Protein Multimerization , AIDS Vaccines/therapeutic use , Animals , CD4-Positive T-Lymphocytes , HIV Antibodies/immunology , Humans , Immunoglobulin G , Lymphocyte Count , Mice , Mice, Transgenic , Treatment Outcome , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...