Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 129: 155612, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38669968

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) continues to be a major global health challenge, ranking as a top cause of cancer-related mortality. Alarmingly, the five-year survival rate for CRC patients hovers around a mere 10-30 %. The disruption of fibroblast growth factor receptor (FGFRs) signaling pathways is significantly implicated in the onset and advancement of CRC, presenting a promising target for therapeutic intervention in CRC management. Further investigation is essential to comprehensively elucidate FGFR1's function in CRC and to create potent therapies that specifically target FGFR1. PURPOSE: This study aims to demonstrate the oncogenic role of FGFR1 in colorectal cancer and to explore the potential of ß,ß-dimethylacrylalkannin (ß,ß-DMAA) as a therapeutic option to inhibit FGFR1. METHODS: In this research, we employed a comprehensive suite of techniques including tissue array, kinase profiling, computational docking, knockdown assay to predict and explore the inhibitor of FGFR1. Furthermore, we utilized kinase assay, pull-down, cell proliferation tests, and Patient derived xenograft (PDX) mouse models to further investigate a novel FGFR1 inhibitor and its impact on the growth of CRC. RESULTS: In our research, we discovered that FGFR1 protein is markedly upregulated in colorectal cancer tissues, suggesting a significant role in regulating cellular proliferation, particularly in patients with colorectal cancer. Furthermore, we conducted a computational docking, kinase profiling analysis, simulation and identified that ß,ß-DMAA could directly bind with FGFR1 within ATP binding pocket domain. Cell-based assays confirmed that ß,ß-DMAA effectively inhibited the proliferation of colon cancer cells and also triggered cell cycle arrest, apoptosis, and altered FGFR1-mediated signaling pathways. Moreover, ß,ß-DMAA effectively attenuated the development of PDX tumors in mice that were FGFR1-positive, with no notable toxicity observed. In summary, our study highlights the pivotal role of FGFR1 in colorectal cancer, suggesting that inhibiting FGFR1 activity could be a promising strategy for therapeutic intervention. We present strong evidence that targeting FGFR1 with ß,ß-DMAA is a viable approach for the management of colorectal cancer. Given its low toxicity and high efficacy, ß,ß-DMAA, as an FGFR1 inhibitor, warrants further investigation in clinical settings for the treatment of FGFR1-positive tumors.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Receptor, Fibroblast Growth Factor, Type 1 , Animals , Female , Humans , Mice , Acrylamides/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Molecular Docking Simulation , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
2.
Cell Mol Life Sci ; 79(10): 520, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36107262

ABSTRACT

Activation of the Ras signaling pathway promotes the growth of malignant human glioblastoma multiforme (GBM). Mutations in Ras are rare in GBM, elevated levels of activated Ras are prevalently observed in GBM. However, the potential mechanism of how Ras is activated in GBM remains unclear. In this study, we screened a new interacted protein of Ras, PHLDA1. Our findings confirmed that PHLDA1 acted as an oncogene and promoted glioma progression and recurrence. We demonstrated that PHLDA1 was upregulated in GBM tissues and cells. PHLDA1 overexpression promoted cell proliferation and tumor growth. In terms of mechanism, PHLDA1 promoted cell proliferation by regulating Ras/Raf/Mek/Erk signaling pathway. Moreover, Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. PHLDA1 and Src competed for binding with Ras, inhibiting Ras phosphorylation by Src and rescuing Ras activity. This study may provide a new idea of the molecular mechanism underlying glioma progression and a novel potential therapeutic target for comprehensive glioblastoma treatment.


Subject(s)
Glioblastoma , Cell Proliferation , GTP Phosphohydrolases , Glioblastoma/pathology , Humans , Mitogen-Activated Protein Kinase Kinases/metabolism , Transcription Factors , Tyrosine
3.
J Cancer ; 9(24): 4726-4735, 2018.
Article in English | MEDLINE | ID: mdl-30588258

ABSTRACT

There are four basic cell death modes in animals, i.e. physiological senescent death (SD) and apoptosis as well as pathological necrosis and stress-induced cell death (SICD). There have been numerous publications describing "apoptosis" in cancer, mostly focused on killing cancer cells using radio- or chemo-therapy, with few on exploring how cancer cells die naturally without such treatments. Spontaneous benign or malignant neoplasms are immortal and autonomous, but they still retain some allegiance to their parental tissue or organ and thus are still somewhat controlled by the patient's body. Because of these properties of immortality, semi-autonomy, and semi-allegiance to the patient's body, spontaneous tumors have no redundant cells and resemble "semi-new organisms" parasitizing the patients, becoming a unique tissue type possessing a hitherto unannotated cell death mode besides SD, apoptosis, necrosis and SICD. Particularly, apoptosis aims to expunge redundant cells, whereas this new mode does not. In contrast to spontaneous tumors, many histologically malignant tumors induced in experimental animals, before they reach an advanced stage, regress after withdrawal of the inducer. This mortal and non-autonomous nature disqualifies these animal lesions as authentic neoplasms and as semi-new organisms but makes them a good tissue type for apoptosis studies. Ruminating over cell death in spontaneous cancers and many inauthentic tumors induced in animals from these new slants makes us realize that "whether cancer cells undergo apoptosis" is not an easy question with a simple answer. Our answer is that cancer cells have an uncharacterized programmed cell death mode, which is not apoptosis.

4.
Int J Biol Sci ; 14(13): 1800-1812, 2018.
Article in English | MEDLINE | ID: mdl-30443184

ABSTRACT

Organisms and their different component levels, whether organelle, cellular or other, come by birth and go by death, and the deaths are often balanced by new births. Evolution on the one hand has built demise program(s) in cells of organisms but on the other hand has established external controls on the program(s). For instance, evolution has established death program(s) in animal cells so that the cells can, when it is needed, commit apoptosis or senescent death (SD) in physiological situations and stress-induced cell death (SICD) in pathological situations. However, these programmed cell deaths are not predominantly regulated by the cells that do the dying but, instead, are controlled externally and remotely by the cells' superior(s), i.e. their host tissue or organ or even the animal's body. Currently, it is still unclear whether a cell has only one death program or has several programs respectively controlling SD, apoptosis and SICD. In animals, apoptosis exterminates, in a physiological manner, healthy but no-longer needed cells to avoid cell redundancy, whereas suicidal SD and SICD, like homicidal necrosis, terminate ill but useful cells, which may be followed by regeneration of the live cells and by scar formation to heal the damaged organ or tissue. Therefore, "who dies" clearly differentiates apoptosis from SD, SICD and necrosis. In animals, apoptosis can occur only in those cell types that retain a lifelong ability of proliferation and never occurs in those cell types that can no longer replicate in adulthood. In cancer cells, SICD is strengthened, apoptosis is dramatically weakened while SD has been lost. Most published studies professed to be about apoptosis are actually about SICD, which has four basic and well-articulated pathways involving caspases or involving pathological alterations in the mitochondria, endoplasmic reticula, or lysosomes.


Subject(s)
Apoptosis/physiology , Cell Death/physiology , Cell Proliferation/physiology , Animals , Apoptosis/genetics , Cell Death/genetics , Cell Proliferation/genetics , Humans , Necrosis
5.
Genes (Basel) ; 9(1)2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29337901

ABSTRACT

Tens of thousands of chimeric RNAs, i.e., RNAs with sequences of two genes, have been identified in human cells. Most of them are formed by two neighboring genes on the same chromosome and are considered to be derived via transcriptional readthrough, but a true readthrough event still awaits more evidence and trans-splicing that joins two transcripts together remains as a possible mechanism. We regard those genomic loci that are transcriptionally read through as unannotated genes, because their transcriptional and posttranscriptional regulations are the same as those of already-annotated genes, including fusion genes formed due to genetic alterations. Therefore, readthrough RNAs and fusion-gene-derived RNAs are not chimeras. Only those two-gene RNAs formed at the RNA level, likely via trans-splicing, without corresponding genes as genomic parents, should be regarded as authentic chimeric RNAs. However, since in human cells, procedural and mechanistic details of trans-splicing have never been disclosed, we doubt the existence of trans-splicing. Therefore, there are probably no authentic chimeras in humans, after readthrough and fusion-gene derived RNAs are all put back into the group of ordinary RNAs. Therefore, it should be further determined whether in human cells all two-neighboring-gene RNAs are derived from transcriptional readthrough and whether trans-splicing truly exists.

6.
Plant Cell ; 27(3): 806-22, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25794934

ABSTRACT

Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection.


Subject(s)
Medicago truncatula/metabolism , Medicago truncatula/microbiology , Meristem/growth & development , Meristem/metabolism , Monomeric GTP-Binding Proteins/metabolism , Plant Proteins/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cell Polarity , Gene Expression Regulation, Plant , Green Fluorescent Proteins/metabolism , Meristem/microbiology , Molecular Sequence Data , Mutation/genetics , Phenotype , Plant Diseases/microbiology , Plant Epidermis/cytology , Plant Root Nodulation , Protein Structure, Tertiary , Signal Transduction , Sinorhizobium meliloti/physiology , Subcellular Fractions/metabolism , Nicotiana/cytology , Transformation, Genetic , Up-Regulation
7.
New Phytol ; 201(2): 531-544, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24164597

ABSTRACT

The ta-siRNA pathway is required for lateral organ development, including leaf patterning, flower differentiation and lateral root growth. Legumes can develop novel lateral root organs--nodules--resulting from symbiotic interactions with rhizobia. However, ta-siRNA regulation in nodule formation remains unknown. To explore ta-siRNA regulation in nodule formation, we investigated the roles of REL3, a key component of TAS3 ta-siRNA biogenesis, during nodulation in Lotus japonicus. We characterized the symbiotic phenotypes of the TAS3 ta-siRNA defective rel3 mutant, and analyzed the responses of the rel3 mutant to auxin and ethylene in order to gain insight into TAS3 ta-siRNA regulation of nodulation. The rel3 mutant produced fewer pink nitrogen-fixing nodules, with substantially decreased infection frequency and nodule initiation. Moreover, the rel3 mutant was more resistant than wild-type to 1-naphthaleneacetic acid (NAA) and N-1-naphthylphthalamic acid (NPA) in root growth, and exhibited insensitivity to auxins but greater sensitivity to auxin transport inhibitors during nodulation. Furthermore, the rel3 mutant has enhanced root-specific ethylene sensitivity and altered responses to ethylene during nodulation; the low-nodulating phenotype of the rel3 mutant can be restored by ethylene synthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine (AVG) or action inhibitor Ag(+). The REL3-mediated TAS3 ta-siRNA pathway regulates nodulation by integrating ethylene and auxin signaling.


Subject(s)
Ethylenes/metabolism , Indoleacetic Acids/metabolism , Lotus/metabolism , Plant Proteins/physiology , Plant Root Nodulation/genetics , RNA, Small Interfering/physiology , Mesorhizobium/physiology , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...