Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4734, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413761

ABSTRACT

Hearing loss is considered one of the most common sensory neurological defects, with approximately 60% of cases attributed to genetic factors. Human pathogenic variants in the TBC1D24 gene are associated with various clinical phenotypes, including dominant nonsyndromic hearing loss DFNA65, characterized by progressive hearing loss after the development of language. This study provides an in-depth analysis of the causative gene and mutations in a family with hereditary deafness. We recruited a three-generation family with autosomal dominant nonsyndromic hearing loss (ADNSHL) and conducted detailed medical histories and relevant examinations. Next-generation sequencing (NGS) was used to identify genetic variants in the proband, which were then validated using Sanger sequencing. Multiple computational software tools were employed to predict the impact of the variant on the function and structure of the TBC1D24 protein. A series of bioinformatics tools were applied to determine the conservation characteristics of the sequence, establish a three-dimensional structural model, and investigate changes in molecular dynamics. A detailed genotype and phenotype analysis were carried out. The family exhibited autosomal dominant, progressive, postlingual, and nonsyndromic sensorineural hearing loss. A novel heterozygous variant, c.1459C>T (p.His487Tyr), in the TBC1D24 gene was identified and confirmed to be associated with the hearing loss phenotype in this family. Conservation analysis revealed high conservation of the amino acid affected by this variant across different species. The mutant protein showed alterations in thermodynamic stability, elasticity, and conformational dynamics. Molecular dynamics simulations indicated changes in RMSD, RMSF, Rg, and SASA of the mutant structure. We computed the onset age of non-syndromic hearing loss associated with mutations in the TBC1D24 gene and identified variations in the hearing progression time and annual threshold deterioration across different frequencies. The identification of a new variant associated with rare autosomal dominant nonsyndromic hereditary hearing loss in this family broadens the range of mutations in the TBC1D24 gene. This variant has the potential to influence the interaction between the TLDc domain and TBC domain, thereby affecting the protein's biological function.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Humans , Amino Acid Sequence , Deafness/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss/genetics , Mutation , Pedigree , GTPase-Activating Proteins/genetics
2.
PLoS One ; 17(11): e0276233, 2022.
Article in English | MEDLINE | ID: mdl-36350814

ABSTRACT

BACKGROUND: Hearing loss is considered one of the most common sensory nervous system defects, about 60% of which are caused by genetic factors. Mutations in the GSDME gene are responsible for post-lingual, progressive, autosomal dominant hearing loss. This study aimed to characterize the genetic mutations and clinical features of a Chinese GSDME family. METHODS: After clinical evaluations, high-throughput DNA sequencing was conducted using DNA samples from this family. Sanger sequencing was performed to verify the suspected variants. A detailed genotype and phenotype analysis were carried out. Gene set enrichment analysis (GSEA) was performed to identify the signaling pathway associated with GSDME expression. RESULTS: A known hotspot heterozygous splice-site variation (c.991-15_991_13delTTC) was identified and shown to segregate with the hearing loss phenotype in the family. This pathogenic splice-site variant results in skipping of exon 8. GSEA analysis identified changes in regulation of the cell cycle checkpoint, peroxisome, and amino acid metabolism signaling pathways. CONCLUSIONS: We identified a reported mutation in the GSDME gene. Our findings support the 3 bp deletion (c.991-15_991-13del) was a hotspot variation, and it emerged as an essential contributor to autosomal dominant progressive hearing loss in East Asians. GSDME gene is closely associated with a range of signaling pathways. These characterized findings may provide new evidence for pathogenesis.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss , Humans , China , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...