Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11874, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789729

ABSTRACT

Low-grade glioma (LGG) is heterogeneous at biological and transcriptomic levels, and it is still controversial for the definition and typing of LGG. Therefore, there is an urgent need for specific and practical molecular signatures for accurate diagnosis, individualized therapy, and prognostic evaluation of LGG. Cell death is essential for maintaining homeostasis, developing and preventing hyperproliferative malignancies. Based on diverse programmed cell death (PCD) related genes and prognostic characteristics of LGG, this study constructed a model to explore the mechanism and treatment strategies for LGG cell metastasis and invasion. We screened 1161 genes associated with PCD and divided 512 LGG samples into C1 and C2 subtypes by consistent cluster analysis. We analyzed the two subtypes' differentially expressed genes (DEGs) and performed functional enrichment analysis. Using R packages such as ESTIMATE, CIBERSOTR, and MCPcounter, we assessed immune cell scores for both subtypes. Compared with C1, the C2 subtype has a poor prognosis and a higher immune score, and patients in the C2 subtype are more strongly associated with tumor progression. LASSO and COX regression analysis screened four characteristic genes (CLU, FHL3, GIMAP2, and HVCN1). Using data sets from different platforms to validate the four-gene feature, we found that the expression and prognostic correlation of the four-gene feature had a high degree of stability, showing stable predictive effects. Besides, we found downregulation of CLU, FHL3, and GIMAP2 significantly impairs the growth, migration, and invasive potential of LGG cells. Take together, the four-gene feature constructed based on PCD-related genes provides valuable information for further study of the pathogenesis and clinical treatment of LGG.


Subject(s)
Brain Neoplasms , Gene Expression Regulation, Neoplastic , Glioma , Humans , Glioma/genetics , Glioma/pathology , Glioma/mortality , Glioma/diagnosis , Prognosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Biomarkers, Tumor/genetics , Gene Expression Profiling , Neoplasm Grading , Male , Female , Cell Death/genetics , Transcriptome
2.
Front Immunol ; 15: 1359933, 2024.
Article in English | MEDLINE | ID: mdl-38562929

ABSTRACT

T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.


Subject(s)
Autoimmune Diseases , Humans , Autoimmune Diseases/metabolism , Thymus Gland , Thymocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Ubiquitination
3.
Sci Signal ; 16(806): eabn5410, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816088

ABSTRACT

The ubiquitination-dependent processing of NF-κB2 (also known as p100) is a critical step in the activation of the noncanonical NF-κB pathway. We investigated the molecular mechanisms regulating this process and showed that TRIM55 was the E3 ubiquitin ligase that mediated the ubiquitination of p100 and coordinated its processing. TRIM55 deficiency impaired noncanonical NF-κB activation and B cell function. Mice with a B cell-specific Trim55 deficiency exhibited reduced germinal center formation and antibody production. These mice showed less severe symptoms than those of control mice upon the induction of a systemic lupus-like disease, suggesting B cell-intrinsic functions of TRIM55 in humoral immune responses and autoimmunity. Mechanistically, the ubiquitination of p100 mediated by TRIM55 was crucial for p100 processing by VCP, an ATPase that mediates ubiquitin-dependent protein degradation by the proteasome. Furthermore, we found that TRIM55 facilitated the interaction between TRIM21 and VCP as well as TRIM21-mediated K63-ubiquitination of VCP, both of which were indispensable for the formation of the VCP-UFD1-NPL4 complex and p100 processing. Together, our results reveal a mechanism by which TRIM55 fine-tunes p100 processing and regulates B cell-dependent immune responses in vivo, highlighting TRIM55 as a potential therapeutic target for lupus-like disease.


Subject(s)
NF-kappa B , Signal Transduction , Animals , Mice , Immunity , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , Ubiquitination
4.
Front Oncol ; 13: 1211668, 2023.
Article in English | MEDLINE | ID: mdl-37681021

ABSTRACT

Background: Gastric cancer remains one of the deadliest malignancies in the world, thus urgently requiring effective and safe therapeutics. Claudin18.2 is a member of the tight junction protein family specifically expressed in gastric cancer cells. Monoclonal antibodies targeting Claudin18.2 have been receiving increasing attention recently. ASKB589 is a humanized monoclonal antibody targeting Claudin18.2. Case presentation: This case described a 65-year-old Chinese man diagnosed with gastric cancer metastasizing to the liver and multiple lymph nodes. The biomarker examination revealed that he had proficient mismatch repair (pMMR), human epidermal growth factor receptor 2 (HER2) was negative, and the combined proportion score (CPS) of PD-L1 (22C3) was 1. After being proven to be moderately positive for Claudin18.2 expression, he received ASKB589 and CAPOX (oxaliplatin and capecitabine) chemotherapy. After a six-cycle therapy (from 14 July 2022 to 29 November 2022), the target tumor was evaluated for partial response (PR) by the investigator based on the enhanced CT scan according to the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria. However, this patient also suffered from intolerable ascites that gradually aggravated during the therapy, which was not controlled well by the supporting therapy. Therefore, the patient stopped receiving the combined therapy in our hospital and did not receive any other anti-tumor treatment. After 4 months of discontinuation of the drug, the patient's ascites almost disappeared, while the tumor continued to reduce and almost achieved clinically complete relapse (cCR). His progression-free survival (PFS) reached at least 10 months. Conclusion: This is the first case of severe ascites reported after anti-Claudin18.2 monoclonal antibody treatment for advanced gastric cancer. At the same time, the patient still benefited significantly from this incomplete treatment even after discontinuation of the drug and the PFS reached at least 10 months. The ascites might be an immune adverse effect related to the monoclonal antibody-induced antibody-dependent cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Further mechanisms remain to be investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...