Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Ageing Res Rev ; 100: 102409, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986844

ABSTRACT

Recently, the incidence of heat-related illnesses has exhibited a steadily upward trend, which is closely associated with several environmental factors such as climate change and air pollution. The progression of heat-related illnesses is a continuous process and can progress to the terminal period when it transforms into heat stroke, the most severe form. Heat stroke is markedly by a core body temperature above 40°C and central nervous system dysfunction. Current knowledge suggests that the pathogenesis of heat stroke is complex and varied, including inflammatory response, oxidative stress, cell death, and coagulation dysfunction. This review consolidated recent research progress on the pathophysiology and pathogenesis of heat stroke, with a focus on the related molecular mechanisms. In addition, we reviewed common strategies and sorted out the drugs in various preclinical stages for heat stroke, aiming to offer a comprehensive research roadmap for more in-depth researches into the mechanisms of heat stroke and the reduction in the mortality of heat stroke in the future.

2.
J Cell Physiol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962880

ABSTRACT

Ischemia-reperfusion injury (IRI) results in irreversible metabolic dysfunction and structural damage to tissues or organs, posing a formidable challenge in the field of organ implantation, cardiothoracic surgery, and general surgery. Glycogen synthase kinase-3ß (GSK-3ß) a multifunctional serine/threonine kinase, is involved in a variety of biological processes, including cell proliferation, apoptosis, and immune response. Phosphorylation of its tyrosine 216 and serine 9 sites positively and negatively regulates the activation and inactivation of the enzyme. Significantly, inhibition or inactivation of GSK-3ß provides protection against IRI, making it a viable target for drug development. Though numerous GSK-3ß inhibitors have been identified to date, the development of therapeutic treatments remains a considerable distance away. In light of this, this review summarizes the complicated network of GSK-3ß roles in IRI. First, we provide an overview of GSK-3ß's basic background. Subsequently, we briefly review the pathological mechanisms of GSK-3ß in accelerating IRI, and highlight the latest progress of GSK-3ß in multiorgan IRI, encompassing heart, brain, kidney, liver, and intestine. Finally, we discuss the current development of GSK-3ß inhibitors in various organ IRI, offering a thorough and insightful reference for GSK-3ß as a potential target for future IRI therapy.

3.
J Adv Res ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38653371

ABSTRACT

INTRODUCTION: Myocardial ischemia-reperfusion (IR) injury is a common medical issue contributing to the onset and progression of ischemic heart diseases (IHD). Growth arrest-specific gene 6 (GAS6), a vitamin K-dependent secretory protein, promotes cell proliferation and inhibits inflammation and apoptosis through binding with Tyro3, Axl, and Mertk (TAM) receptors. OBJECTIVES: Our study aimed to examine the effect of GAS6 pathways activation as a potential new treatment in myocardial IR injury. METHODS: Gain- and loss-of-function experiments were utilized to determine the roles of GAS6 in the pathological processes of myocardial IR injury. RESULTS: Our results revealed down-regulated levels of GAS6, Axl, and SIRT1 in murine hearts subjected to IR injury, and cardiomyocytes challenged with hypoxia reoxygenation (HR) injury. GAS6 overexpression significantly improved cardiac dysfunction in mice subjected to myocardial IR injury, accompanied by reconciled mitochondrial dysfunction, oxidative stress, and apoptosis. In vitro experiments also observed a protective effect of GAS6 in cardiomyocytes. SIRT1 was found to function as a downstream regulator for GAS6/Axl signaling axis. Through screening a natural product library, a polyphenol natural compound catechin was identified to exhibit a protective effect by turning on GAS6/Axl-SIRT1 cascade. CONCLUSIONS: Together, our findings indicate that GAS6 emerges as a potential novel target in the management of myocardial IR injury and other related anomalies.

4.
Phytomedicine ; 129: 155677, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678951

ABSTRACT

BACKGROUND: Septic heart failure has been recognized as a puzzle since antiquity and poses a major challenge to modern medicine. Our previous work has demonstrated the potential effects of lycorine (LYC) on sepsis and septic myocardial injury. Nonetheless, further exploration is needed to elucidate the underlying cellular and molecular mechanisms. METHODS: In this study, we conducted transcriptome analysis and weighted gene co-expression network analysis (WGCNA) to identify the key genes and reveal the mechanism of LYC against septic heart failure. PURPOSE: This study aims to apply bioinformatic analysis and experimental validations to explore the protective effects and underlying mechanism of LYC on the cecal ligation and puncture (CLP)-induced sepsis model mice. RESULTS: Transcriptome analysis revealed the differentially expressed genes (DEGs) following LYC treatment. WGCNA analysis identified gene modules associated with LYC-mediated protection, with BCL3 emerging as a core gene within these modules. Notably, BCL3 was an overlapping gene of DEGs and WGCNA core genes induced by LYC treatment, and is highly negatively correlated with cardiac function indicator. In vivo and in vitro study further prove that LYC exerted a protective effect against septic myocardial injury through inhibiting BCL3. BCL3 siRNA ameliorated LPS-induced cardiac injury and inflammation, while BCL3 overexpression reversed the protective effect of LYC against LPS injury. CONCLUSION: In summary, our findings demonstrate the significant attenuation of septic myocardial disorder by LYC, with the identification of BCL3 as a pivotal target gene. This study is the first to report the role of BCL3 in sepsis and septic myocardial injury. Furthermore, the strategy for hub genes screening used in our study facilitates a comprehensive exploration of septic targets and reveals the potential targets for LYC effect. These findings may offer a new therapeutic strategy for the management of septic heart failure, highlighting the cardioprotective effect of LYC as adjunctive therapy for sepsis management.


Subject(s)
Amaryllidaceae Alkaloids , Cardiotonic Agents , Disease Models, Animal , Heart Failure , Phenanthridines , Sepsis , Animals , Sepsis/drug therapy , Heart Failure/drug therapy , Phenanthridines/pharmacology , Amaryllidaceae Alkaloids/pharmacology , Mice , Cardiotonic Agents/pharmacology , Male , Mice, Inbred C57BL , Gene Expression Profiling
5.
Pharmacol Res ; 202: 107125, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438091

ABSTRACT

G protein-coupled receptors (GPCRs) are currently the most widely focused drug targets in the clinic, exerting their biological functions by binding to chemicals and activating a series of intracellular signaling pathways. Formyl-peptide receptor 1 (FPR1) has a typical seven-transmembrane structure of GPCRs and can be stimulated by a large number of endogenous or exogenous ligands with different chemical properties, the first of which was identified as formyl-methionine-leucyl-phenylalanine (fMLF). Through receptor-ligand interactions, FPR1 is involved in inflammatory response, immune cell recruitment, and cellular signaling regulation in key cell types, including neutrophils, neural stem cells (NSCs), and microglia. This review outlines the critical roles of FPR1 in a variety of heart and brain diseases, including myocardial infarction (MI), ischemia/reperfusion (I/R) injury, neurodegenerative diseases, and neurological tumors, with particular emphasis on the milestones of FPR1 agonists and antagonists. Therefore, an in-depth study of FPR1 contributes to the research of innovative biomarkers, therapeutic targets for heart and brain diseases, and clinical applications.


Subject(s)
Brain Diseases , Receptors, Formyl Peptide , Humans , N-Formylmethionine Leucyl-Phenylalanine/metabolism , Receptors, Formyl Peptide/metabolism , Brain/metabolism
6.
Cell Biochem Funct ; 42(2): e3956, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38403920

ABSTRACT

Pterostilbene (PTE, trans-3,5-dimethoxy-4'-hydroxystilbene), a natural plant polyphenol, possesses numerous pharmacological effects, including antioxidant, antidiabetic, antiatherosclerotic, and neuroprotective aspects. This study aims to investigate whether PTE plays a protective role against oxidative stress injury by GAS6/Axl signaling pathway in cardiomyocytes. Hydrogen peroxide (H2 O2 )-induced oxidative stress HL-1 cells were used as models. The mechanism by which PTE protected oxidative stress is investigated by combining cell viability, cell ROS levels, apoptosis assay, molecular docking, quantitative real-time PCR, and western blot analysis. GAS6 shRNA was performed to investigate the involvement of GAS6/Axl pathways in PTE's protective role. The results showed that PTE treatment improved the cell morphology and viability, and inhibited the apoptosis rate and ROS levels in H2 O2 -injured HL-1 cells. Particularly, PTE treatment upregulated the levels of GAS6, Axl, and markers related to oxidative stress, apoptosis, and mitochondrial function related. Molecular docking showed that PTE and GAS6 have good binding ability. Taken together, PTE plays a protective role against oxidative stress injury through inhibiting oxidative stress and apoptosis and improving mitochondrial function. Particularly, GAS6/Axl axis is the surprisingly prominent in the PTE-mediated pleiotropic effects.


Subject(s)
Axl Receptor Tyrosine Kinase , Oxidative Stress , Receptor Protein-Tyrosine Kinases , Stilbenes , Apoptosis , Intercellular Signaling Peptides and Proteins/metabolism , Molecular Docking Simulation , Proto-Oncogene Proteins/metabolism , Reactive Oxygen Species , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Animals , Mice , Stilbenes/pharmacology , Cell Line
7.
Biochem Pharmacol ; 221: 116035, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301968

ABSTRACT

In a previous study, we used metabolomic techniques to identify a new metabolite of Danshen Dripping Pills called isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP), which has potential as a drug candidate for cardiovascular diseases. This study aimed to explore the protective effects of IDHP against septic myocardial injury, as well as its molecular mechanism. Wild type or GAS6 knockout mice injured by cecal ligation and puncture (CLP) were used to observe the effect of IDHP. Here, we found that a specific concentration of IDHP (60 mg/kg) significantly increased the survival rate of septic mice to about 75 % at 72 h post CLP, and showed improvements in sepsis score, blood biochemistry parameters, cardiac function, and myocardial tissue damage. Furthermore, IDHP inhibited myocardial oxidative stress, inflammatory response, apoptosis, and mitochondrial dysfunction. Molecularly, we discovered that IDHP treatment reversed the CLP-induced downregulation of GAS6, Axl, and p-AMPK/AMPK expression. In addition, GAS6 knockout reversed the positive effect of IDHP in septic mice, indicated by more severe myocardial tissue damage, oxidative stress, inflammatory response, and mitochondrial dysfunction. GAS6 knockout also resulted in decreased levels of GAS6, Axl, and p-AMPK/AMPK. Taken together, our study provides evidence that IDHP has significant cardioprotective effects against sepsis by regulating the GAS6/Axl-AMPK signaling pathway. This finding has important therapeutic potential for treating sepsis.


Subject(s)
Mitochondrial Diseases , Sepsis , Wound Infection , Animals , Mice , AMP-Activated Protein Kinases , Myocardium , Signal Transduction , Mice, Knockout , Sepsis/drug therapy
8.
J Adv Res ; 55: 145-158, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36801383

ABSTRACT

INTRODUCTION: Myocardial injury is a serious complication in sepsis with high mortality. Zero-valent iron nanoparticles (nanoFe) displayed novel roles in cecal ligation and puncture (CLP)-induced septic mouse model. Nonetheless, its high reactivity makes it difficult for long-term storage. OBJECTIVES: To overcome the obstacle and improve therapeutic efficiency, a surface passivation of nanoFe was designed using sodium sulfide. METHODS: We prepared iron sulfide nanoclusters and constructed CLP mouse models. Then the effect of sulfide-modified nanoscale zero-valent iron (S-nanoFe) on the survival rate, blood routine parameters, blood biochemical parameters, cardiac function, and pathological indicators of myocardium was observed. RNA-seq was used to further explore the comprehensive protective mechanisms of S-nanoFe. Finally, the stability of S-nanoFe-1d and S-nanoFe-30 d, together with the therapeutic efficacy of sepsis between S-nanoFe and nanoFe was compared. RESULTS: The results revealed that S-nanoFe significantly inhibited the growth of bacteria and exerted a protective role against septic myocardial injury. S-nanoFe treatment activated AMPK signaling and ameliorated several CLP-induced pathological processes including myocardial inflammation, oxidative stress, mitochondrial dysfunction. RNA-seq analysis further clarified the comprehensive myocardial protective mechanisms of S-nanoFe against septic injury. Importantly, S-nanoFe had a good stability and a comparable protective efficacy to nanoFe. CONCLUSIONS: The surface vulcanization strategy for nanoFe has a significant protective role against sepsis and septic myocardial injury. This study provides an alternative strategy for overcoming sepsis and septic myocardial injury and opens up possibilities for the development of nanoparticle in infectious diseases.


Subject(s)
Heart Injuries , Sepsis , Mice , Animals , Iron , Myocardium/pathology , Heart Injuries/drug therapy , Heart Injuries/complications , Heart Injuries/pathology , Sepsis/drug therapy , Sepsis/complications , Sulfides/therapeutic use
9.
Ageing Res Rev ; 93: 102163, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092307

ABSTRACT

Cardiovascular disease (CVD) is the primary global cause of death, and inflammation is a crucial factor in the development of CVDs. The acute phase inflammatory protein pentraxin 3 (PTX3) is a biomarker reflecting the immune response. Recent research indicates that PTX3 plays a vital role in CVDs and has been investigated as a possible biomarker for CVD in clinical trials. PTX3 is implicated in the progression of CVDs through mechanisms such as exacerbating vascular endothelial dysfunction, affecting angiogenesis, and regulating inflammation and oxidative stress. This review summarized the structure and function of PTX3, focusing on its multifaceted effects on CVDs, such as atherosclerosis, myocardial infarction, and hypertension. This may help in explaining the varying PTX3 functions and usage, as well as in utilizing target organs to manage diseases. Moreover, elucidating the opposite role of PTX3 in the cardiovascular system will demonstrate the therapeutic and predictive potential in human diseases.


Subject(s)
Cardiovascular Diseases , Humans , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Inflammation/metabolism , Biomarkers
10.
J Cell Physiol ; 239(1): 67-78, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882238

ABSTRACT

Cerebral injury is closely associated with enhanced oxidative stress. A newly discovered secretory adipocytokine, intelectin-1 (ITLN-1), has been shown to have beneficial effects in neuroprotection in epidemiological studies. However, the specific molecular mechanism of ITLN-1 in protecting against cerebral oxidative stress needs further investigation. In this study, we hypothesize that ITLN-1 plays a protective role against oxidative stress injury through the SIRT1/PGC1-α signaling pathway in neuromatocytes. We used hydrogen peroxide (H2 O2 ) as a oxidative stress model to simulate oxidative stress injury. Then, small interfering RNAs (siRNAs) was used to knock down SIRT1 in N2a cells with or without ITLN overexpression, followed by H2 O2 -induced injury. We observed that H2 O2 injury significantly decreased the levels of ITLN-1, SIRT1, and PGC-1α. However, ITLN overexpression reversed H2 O2 -induced decline in cell viability and rise in apoptosis and intracellular ROS levels in N2a cells, while ITLN siRNA worsened the neurocyte injury. Furthermore, SIRT1 knockdown reversed the positive effect of ITLN overexpression on oxidative stress injury in N2a cells. Taken together, these findings suggest that ITLN-1 exerts neuroprotective effects against oxidative stress injury primarily through the SIRT1/PGC-1α axis.


Subject(s)
Adipokines , Neuroblastoma , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sirtuin 1 , Apoptosis , Neuroblastoma/genetics , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA, Small Interfering/metabolism , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Adipokines/genetics , Adipokines/metabolism
11.
Free Radic Biol Med ; 210: 195-211, 2024 01.
Article in English | MEDLINE | ID: mdl-37979891

ABSTRACT

Sepsis is a major health threat and often results in heart failure. Growth arrest-specific gene 6 (GAS6), a 75-kDa vitamin K-dependent protein, participates in immune regulation and inflammation through binding to AXL (the TAM receptor family). This study was designed to examine the myocardial regulatory role of GAS6 in sepsis. Serum GAS6 levels were increased in septic patients and mice while myocardial GAS6 levels were decreased in septic mice. Single-cell RNA sequencing further revealed a decline in GAS6 levels of nearly all cell clusters including cardiomyocytes. GAS6 overexpression via adeno-associated virus 9 (AAV9) overtly improved cardiac dysfunction in cecum ligation and puncture (CLP)-challenged mice, along with alleviated mitochondrial injury, endoplasmic reticulum stress, oxidative stress, and apoptosis. However, GAS6-elicited beneficial effects were removed by GAS6 knockout. The in vitro study was similar to these findings. Our data also noted a downstream effector role for NLRP3 in GAS6-initiated myocardial response. GAS6 knockout led to elevated levels of NLRP3, the effect of which was reconciled by GAS6 overexpression. Taken together, these results revealed the therapeutical potential of targeting GAS6/AXL-NLRP3 signaling in the management of heart anomalies in sepsis.


Subject(s)
Heart Diseases , Sepsis , Animals , Humans , Mice , Heart Diseases/metabolism , Inflammasomes , Myocardium/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sepsis/complications , Sepsis/genetics
12.
Mil Med Res ; 10(1): 62, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072952

ABSTRACT

Nuclear receptor subfamily 1, group D, member 1 (NR1D1, also known as REV-ERBα) belongs to the nuclear receptor (NR) family, and is a heme-binding component of the circadian clock that consolidates circadian oscillators. In addition to repressing the transcription of multiple clock genes associated with circadian rhythms, NR1D1 has a wide range of downstream target genes that are intimately involved in many physiopathological processes, including autophagy, immunity, inflammation, metabolism and aging in multiple organs. This review focuses on the pivotal role of NR1D1 as a key transcription factor in the gene regulatory network, with particular emphasis on the milestones of the latest discoveries of NR1D1 ligands. NR1D1 is considered as a promising drug target for treating diverse diseases and may contribute to research on innovative biomarkers and therapeutic targets for organ injury-related diseases. Further research on NR1D1 ligands in prospective human trials may pave the way for their clinical application in many organ injury-related disorders.


Subject(s)
Circadian Rhythm , Nuclear Receptor Subfamily 1, Group D, Member 1 , Humans , Prospective Studies , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
13.
Int J Biol Sci ; 19(11): 3341-3359, 2023.
Article in English | MEDLINE | ID: mdl-37497001

ABSTRACT

Cancer is a multi-step disease caused by the accumulation of genetic mutations and/or epigenetic changes, and is the biggest challenge around the world. Cytokines, including chemokines, exhibit expression changes and disorders in all human cancers. These cytokine abnormalities can disrupt homeostasis and immune function, and make outstanding contributions to various stages of cancer development such as invasion, metastasis, and angiogenesis. Chemokines are a superfamily of small molecule chemoattractive cytokines that mediate a variety of cellular functions. Importantly, the interactions of chemokine members CXCL12 and its receptors CXCR4 and CXCR7 have a broad impact on tumor cell proliferation, survival, angiogenesis, metastasis, and tumor microenvironment, and thus participate in the onset and development of many cancers including leukemia, breast cancer, lung cancer, prostate cancer and multiple myeloma. Therefore, this review aims to summarize the latest research progress and future challenges regarding the role of CXCL12-CXCR4/CXCR7 signaling axis in cancer, and highlights the potential of CXCL12-CXCR4/CXCR7 as a biomarker or therapeutic target for cancer, providing essential strategies for the development of novel targeted cancer therapies.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Prostatic Neoplasms , Humans , Breast Neoplasms/metabolism , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Chemotaxis , Prostatic Neoplasms/metabolism , Receptors, CXCR4/genetics , Signal Transduction/genetics , Tumor Microenvironment
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(7): 649-655, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37403725

ABSTRACT

Inflammation underlies a wide variety of physiological and pathological processes, and plays a pivotal role in controlling pathogen infection. C1q/tumor necrosis factor (TNF) related proteins (CTRPs), a newly discovered adipokine family with conservative structure and wide distribution, has attracted increasing attention. The CTRP family consists of more than 15 members which fall into the characteristic C1q domain. Increasing studies have demonstrated that CTRPs are involved in the onset and development of inflammation and metabolism as well as related diseases, including myocardial infarction, sepsis and tumors. Here, we first clarified the characteristic domains of CTRPs, and then elucidated their roles in inflammatory-related diseases. Taken together, the information presented here provides new perspectives for therapeutic strategies to improve inflammatory and metabolic abnormalities.


Subject(s)
Complement C1q , Myocardial Infarction , Humans , Complement C1q/metabolism , Tumor Necrosis Factor-alpha/metabolism , Inflammation/metabolism
15.
Cell Mol Biol Lett ; 28(1): 51, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37370025

ABSTRACT

The NOD-like receptor protein 3 (NLRP3) inflammasome is a protein complex that regulates innate immune responses by activating caspase-1 and the inflammatory cytokines interleukin (IL)-1ß and IL-18. Multiple studies have demonstrated the importance of the NLRP3 inflammasome in the development of immune and inflammation-related diseases, including arthritis, Alzheimer's disease, inflammatory bowel disease, and other autoimmune and autoinflammatory diseases. This review first explains the activation and regulatory mechanism of the NLRP3 inflammasome. Secondly, we focus on the role of the NLRP3 inflammasome in various inflammation-related diseases. Finally, we look forward to new methods for targeting the NLRP3 inflammasome to treat inflammation-related diseases, and provide new ideas for clinical treatment.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Immunity, Innate , Inflammasomes/metabolism , Inflammation , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins
16.
Bioeng Transl Med ; 8(3): e10517, 2023 May.
Article in English | MEDLINE | ID: mdl-37206244

ABSTRACT

Most sepsis deaths are due to the development of multiple organ failure, in which heart failure is a recognized manifestation of sepsis. To date, the role of liver X receptors α (NR1H3) in sepsis is still uncertain. Here, we hypothesized that NR1H3 mediates multiple essential sepsis-related signalings to attenuate septic heart failure. Adult male C57BL/6 or Balbc mice and HL-1 myocardial cell line were performed for in vivo and in vitro experiments, respectively. NR1H3 knockout mice or NR1H3 agonist T0901317 was applied to evaluate the impact of NR1H3 on septic heart failure. We found decreased myocardial expression levels of NR1H3-related molecules while increased NLRP3 level in septic mice. NR1H3 knockout worsensed cardiac dysfunction and injury in mice subjected to cecal ligation and puncture (CLP), in association with exacerbated NLRP3-mediated inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis-related markers. The administration of T0901317 reduced systemic infection and improve cardiac dysfunction in septic mice. Moreover, Co-IP assays, luciferase reporter assays, and chromatin immunoprecipitation analysis, confirmed that NR1H3 directly repressed NLRP3 activity. Finally, RNA-seq detection further clarified an overview of the roles of NR1H3 in sepsis. In general, our findings indicate that NR1H3 had a significant protective effect against sepsis and sepsis-induced heart failure.

17.
Cell Mol Biol Lett ; 28(1): 35, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101253

ABSTRACT

BACKGROUND: Heart failure is a common complication of sepsis with a high mortality rate. It has been reported that melatonin can attenuate septic injury due to various properties. On the basis of previous reports, this study will further explore the effects and mechanisms of melatonin pretreatment, posttreatment, and combination with antibiotics in the treatment of sepsis and septic myocardial injury. METHODS AND RESULTS: Our results showed that melatonin pretreatment showed an obvious protective effect on sepsis and septic myocardial injury, which was related to the attenuation of inflammation and oxidative stress, the improvement of mitochondrial function, the regulation of endoplasmic reticulum stress (ERS), and the activation of the AMPK signaling pathway. In particular, AMPK serves as a key effector for melatonin-initiated myocardial benefits. In addition, melatonin posttreatment also had a certain degree of protection, while its effect was not as remarkable as that of pretreatment. The combination of melatonin and classical antibiotics had a slight but limited effect. RNA-seq detection clarified the cardioprotective mechanism of melatonin. CONCLUSION: Altogether, this study provides a theoretical basis for the application strategy and combination of melatonin in septic myocardial injury.


Subject(s)
Melatonin , Sepsis , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , AMP-Activated Protein Kinases/metabolism , Myocardium/metabolism , Sepsis/complications , Sepsis/drug therapy
18.
Free Radic Biol Med ; 204: 8-19, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37085126

ABSTRACT

Sepsis can cause various organ dysfunction, which heart failure may be associated with significant mortality. Recently, natural plant extracts have gradually attracted people's attention in the clinical treatment of cardiovascular diseases. Psoralidin (PSO) is one of the main bioactive compounds from the seeds of Psoralea corylifolia L and exhibits remarkable protective effects in diseases, including cancer, osteoporosis, and depression. Recently, NR1H3 is one of the emerging nuclear receptors targets for the various drugs. This study first reported the porotective role of PSO in septic myocardial injury, which was mainly attributed to the NR1H3-dependent manner. NR1H3 knockout mice subjected to cecal ligation and puncture (CLP) were used to investigate the involvement of NR1H3 in PSO protection. Our results showed that PSO prominently improved cardiac function, attenuated inflammation, inhibited oxidative stress, improved mitochondrial function, regulated ERS, suppressed apoptosis, and particularly increased NR1H3 and p-AMPK levels. However, NR1H3 knockout reversed the positive role of PSO in septic mice. Furthermore, activation of NR1H3 by T0901317 also increased the activity of AMPK and ACC in the HL-1 cardiomyocytes, indicating the regulatory relationship between NR1H3 and AMPK signaling. Together, this study demonstrated the beneficial effect of PSO in septic myocardial injury through activation of NR1H3/AMPK pathway.


Subject(s)
Heart Injuries , Sepsis , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Myocardium/metabolism , Signal Transduction , Mice, Knockout , Sepsis/drug therapy , Sepsis/genetics , Sepsis/complications
19.
Ageing Res Rev ; 87: 101900, 2023 06.
Article in English | MEDLINE | ID: mdl-36871782

ABSTRACT

Fibrosis is a universal aging-related pathological process in the different organ, but is actually a self-repair excessive response. To date, it still remains a large unmet therapeutic need to restore injured tissue architecture without detrimental side effects, due to the limited clinical success in the treatment of fibrotic disease. Although specific organ fibrosis and the associated triggers have distinct pathophysiological and clinical manifestations, they often share involved cascades and common traits, including inflammatory stimuli, endothelial cell injury, and macrophage recruitment. These pathological processes can be widely controlled by a kind of cytokines, namely chemokines. Chemokines act as a potent chemoattractant to regulate cell trafficking, angiogenesis, and extracellular matrix (ECM). Based on the position and number of N-terminal cysteine residues, chemokines are divided into four groups: the CXC group, the CX3C group, the (X)C group, and the CC group. The CC chemokine classes (28 members) is the most numerous and diverse subfamily of the four chemokine groups. In this Review, we summarized the latest advances in the understanding of the importance of CC chemokine in the pathogenesis of fibrosis and aging and discussed potential clinical therapeutic strategies and perspectives aimed at resolving excessive scarring formation.


Subject(s)
Chemokines, CC , Chemokines , Humans , Chemokines/physiology , Cytokines , Fibrosis , Aging
20.
Free Radic Biol Med ; 197: 46-57, 2023 03.
Article in English | MEDLINE | ID: mdl-36693441

ABSTRACT

Myocardial injury is a serious complication of sepsis associated with high morbidity and mortality. Our previous work has confirmed that silibinin (SIL) alleviates septic myocardial injury, but the specific molecular mechanism has not been fully elucidated. This study aimed to identify its potential targets through network pharmacology combined with experimental verification. Firstly, a total of 29 overlapping genes between sepsis and SIL targets were obtained from RNA-seq analysis and the known databases. Subsequently, KEGG and GO analysis showed that these genes were enriched in immune response and cytokine-cytokine receptor interaction pathways. Notably, CCR2 was identified as an important candidate hub by protein-protein interaction analysis and molecular docking approach. In vivo experiments showed that SIL treatment significantly improved survival rate and cardiac function in septic mice, accompanied by decreased CCR2 expression. Moreover, in vitro experiments obtained the similar results. Especially, CCR2 siRNA attenuated inflammation response. In conclusion, this study systematically elucidated the key target of SIL in the treatment of septic myocardial injury. These findings provide valuable insights into the targets of sepsis and offer new avenues for exploring drug effect systematically.


Subject(s)
Heart Injuries , Animals , Mice , Cytokines , Heart Injuries/drug therapy , Heart Injuries/genetics , Molecular Docking Simulation , Myocardium , Receptors, CCR2/genetics , Silybin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...