Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 10449, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729233

ABSTRACT

In this paper, a piecewise sine waveguide (PWSWG) is proposed as the slow-wave structure (SWS) to develop high-power terahertz (THz) traveling wave tubes (TWTs). The PWSWG is an improvement over the rectangular waveguide wherein its two E-planes simultaneously oscillate up and down along the longitudinal direction. The oscillation curve in the H-plane is a piecewise sine curve formed by inserting line segments into the peaks and troughs of the sine curve. The simulation analysis and experimental verification show that the PWSWG offers the advantages of large interaction impedance and excellent electromagnetic transmission performance. Furthermore, the calculation results of beam-wave interaction show that the TWT based on PWSWG SWS can generate a radiated power of 253.1 W at the typical frequency of 220 GHz, corresponding to a gain of 37.04 dB and an interaction efficiency of 6.92%. Compared with the conventional SWG TWTs, the PWSWG TWT has higher interaction efficiency and shorter saturation tube length. In conclusion, the PWSWG proposed in this paper can be considered a suitable SWS for high-power THz radiation sources.

2.
Appl Opt ; 54(16): 5011-5, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26192659

ABSTRACT

An 8 kW level quasi-continuous-wave (QCW) face-pumped 1064 nm slab laser with high beam quality was developed by a master oscillator power amplifier (MOPA) system. A single-mode fiber seed laser was amplified by two-stage single-pass Nd:YAG rod preamplifiers and four face-pumped Nd:YAG slab amplifiers. The slab amplifiers were well designed with uniform pumping and uniform cooling for well-distributed thermal and stress. A dynamically feedbacked optical aberration compensation device was employed to correct low-order optical aberration, and the residue high-order optical aberration was corrected by an adaptive optics system. The QCW MOPA delivered up to an average power of 8.2 kW with a pulse duration of 200 µs at a repetition rate of 400 Hz. The beam quality factor was measured to be ß=3.5.

3.
Opt Lett ; 39(7): 1965-7, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24686650

ABSTRACT

Continuous wave 808 nm pump laser-induced thermal damage of polycrystalline transparent ceramic and crystalline Nd:YAG materials was investigated both experimentally and theoretically. The measured temperature agrees well with the theoretical simulation, and the maximum hoop stresses occur on the incident facet of the end-pumped rod at about √2 times of the pump beam radius w0, where the temperature gradient is the highest and the damage occurs first at this location. The fracture-limited laser intensity of ceramics was experimentally measured to be 6.4±0.6 kW/cm2, nearly 64% higher than that of the crystals (3.9±0.3 kW/cm2). The deduced thermal fracture stress for ceramic was 386±50 MPa, which is 64% higher than that of the crystals (235±16 MPa).

4.
Opt Express ; 21(6): 7156-61, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23546099

ABSTRACT

We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 µm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 µm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.


Subject(s)
Lasers, Solid-State , Refractometry/instrumentation , Equipment Design , Equipment Failure Analysis , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL
...