Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 8(2): 149-164, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37500747

ABSTRACT

Viral delivery of DNA for the targeted reprogramming of human T cells can lead to random genomic integration, and electroporation is inefficient and can be toxic. Here we show that electroporation-induced toxicity in primary human T cells is mediated by the cytosolic pathway cGAS-STING (cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase-stimulator of interferon genes). We also show that an isotonic buffer, identified by screening electroporation conditions, that reduces cGAS-STING surveillance allowed for the production of chimaeric antigen receptor (CAR) T cells with up to 20-fold higher CAR T cell numbers than standard electroporation and with higher antitumour activity in vivo than lentivirally generated CAR T cells. The osmotic pressure of the electroporation buffer dampened cGAS-DNA interactions, affecting the production of the STING activator 2'3'-cGAMP. The buffer also led to superior efficiencies in the transfection of therapeutically relevant primary T cells and human haematopoietic stem cells. Our findings may facilitate the optimization of electroporation-mediated DNA delivery for the production of genome-engineered T cells.


Subject(s)
DNA , Nucleotidyltransferases , Humans , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Transfection , T-Lymphocytes/metabolism
2.
Mol Cell ; 82(21): 4160-4175.e6, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36272409

ABSTRACT

CRISPR-Cas9-mediated genome editing depends on PAM recognition to initiate DNA unwinding. PAM mutations can abolish Cas9 binding and prohibit editing. Here, we identified a Cas9 from the thermophile Alicyclobacillus tengchongensis for which the PAM interaction can be robustly regulated by DNA topology. AtCas9 has a relaxed PAM of N4CNNN and N4RNNA (R = A/G) and is able to bind but not cleave targets with mutated PAMs. When PAM-mutated DNA was in underwound topology, AtCas9 exhibited enhanced binding affinity and high cleavage activity. Mechanistically, AtCas9 has a unique loop motif, which docked into the DNA major groove, and this interaction can be regulated by DNA topology. More importantly, AtCas9 showed near-PAMless editing of supercoiled plasmid in E. coli. In mammalian cells, AtCas9 exhibited broad PAM preference to edit plasmid with up to 72% efficiency and effective base editing at four endogenous loci, representing a potentially powerful tool for near-PAMless editing.


Subject(s)
CRISPR-Cas Systems , Escherichia coli , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Editing , DNA/genetics , Plasmids , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...