Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 219: 115974, 2024 01.
Article in English | MEDLINE | ID: mdl-38081366

ABSTRACT

Fatty acid binding protein 5 (FABP5) is an intracellular chaperone of fatty acid molecules that regulates lipid metabolism and cell growth. However, its role in intestinal inflammation remains enigmatic. Through examination of human tissue samples and single-cell data, we observed a significant upregulation of FABP5 within the mucosa of patients afflicted with ulcerative colitis (UC) and Crohn's disease (CD), predominantly localized in intestinal macrophages. Herein, we investigate the regulation of FABP5-IN-1, a FABP5 inhibitor, on various cells of the gut in an inflammatory environment. Our investigations confirmed that FABP5 ameliorates DSS-induced colitis in mice by impeding the differentiation of macrophages into M1 macrophages in vitro and in vivo. Furthermore, following FABP5-IN-1 intervention, we observed a notable restoration of intestinal goblet cells and tuft cells, even under inflammatory conditions. Additionally, FABP5-IN-1 exhibits a protective effect against DSS-induced colitis by promoting the polarization of macrophages towards the M2 phenotype in vivo. In summary, FABP5-IN-1 confers protection against DSS-induced acute colitis through a multifaceted approach, encompassing the reduction of inflammatory macrophage infiltration, macrophage polarization, regulating Th17/Treg cells to play an anti-inflammatory role in IBD. The implications for IBD are underscored by the comprehensive in vivo and in vitro experiments presented in this article, thereby positioning FABP5 as a promising and novel therapeutic target for the treatment of IBD.


Subject(s)
Colitis, Ulcerative , Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Colitis/chemically induced , Colitis, Ulcerative/drug therapy , Macrophages , Anti-Inflammatory Agents/pharmacology , Dextran Sulfate/toxicity , Disease Models, Animal , Mice, Inbred C57BL , Colon , Macrophage Activation , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism
2.
Front Plant Sci ; 13: 885418, 2022.
Article in English | MEDLINE | ID: mdl-35720541

ABSTRACT

Oil palm (Elaeis guineensis Jacq.) is a tropical woody oil crop of the palm family and is known as "the oil king of the world," but its palm oil contains about 50% palmitic acid, which is considered unhealthy for humans. Intron polymorphisms (IP) are highly efficient and easily examined molecular markers located adjacent to exon regions of functional genes, thus may be associated with targeted trait variation. In order to speed up the breeding of oil palm fatty acid composition, the current study identified a total of 310 introns located within 52 candidate genes involved in fatty acid biosynthesis in the oil palm genome. Based on the intron sequences, 205 primer pairs were designed, 64 of which showed polymorphism among 70 oil palm individuals. Phenotypic variation of fatty acid content in the 70 oil palm individuals was also investigated. Association analysis revealed that 13 IP markers were significantly associated with fatty acid content variation, and these IP markers were located on chromosomes 2, 5, 6, 8, 9, and 10 of oil palm. The development of such IP markers may be useful for the genetic improvement of fatty acid composition in oil palm.

3.
Front Plant Sci ; 13: 832017, 2022.
Article in English | MEDLINE | ID: mdl-35401608

ABSTRACT

Oil palm (Elaeis guineensis Jacq.) is a well-known vegetable oil-yielding crop. Seedlessness is one of the most prominent traits in oil palm due to its low processing costs and high oil content. Nevertheless, an extensive study on molecular mechanisms regulating seedless phenotype formation in oil palm is very limited so far. In this study, stigma, style, and ovary from seedless and seeded (Tenera and Pisifera) oil palm trees were used to investigate the possible mechanism. Results showed that non-pollination resulted in no fruits, and self- and cross-pollinations resulted in seedless fruits, while boron treatment had no effect on seedless phenotype formation, implying that seedless trees have incomplete self and outcrossing incompatibility. Furthermore, the transcriptome data analysis highlighted eight programmed cell death (PCD) genes and three groups of PCD-related genes: 4-coumarate-CoA ligase (4CL), S-RNase, and MADS-box. The majority of these genes were significantly up-regulated in the stigma and style of Seedless palm trees compared to Tenera and Pisifera. In addition, the co-expression network analysis confirmed the significant correlation among these genes. Moreover, two simple sequence repeats (SSR) markers (S41 and S44) were developed to identify the seedless phenotype. The up-regulation of 4CL and MADS-box TFs activated the expression of PCD genes; on the other hand, S-RNase resulted in pollen tube RNA degradation and triggered PCD. While the link between PCD and seedless phenotype formation in oil palm has not been extensively studied to date, these findings suggest a role of PCD in pollen tube lethality, leading to double fertilization failure and the seedless phenotype.

4.
PLoS One ; 12(12): e0189224, 2017.
Article in English | MEDLINE | ID: mdl-29228032

ABSTRACT

African oil palm (Elaeis guineensis) is an important oil crop grown in tropical region and sensitive to low temperature along with high tolerance to salt and drought stresses. Since the WRKY transcription factor family plays central roles in the regulation of plant stress tolerance, 95 genes belonging to the WRKY family were identified and characterized in oil palm genome. Gene structure analysis showed that EgWRKY genes have considerable variation in intron number (0 to 12) and gene length (477bp to 89,167 bp). Duplicated genes identification indicated 32 EgWRKY genes originated from segmental duplication and two from tandem duplication. Based on transcriptome data, most EgWRKY genes showed tissue-specific expression patterns and their expression could be induced under cold stress. Furthermore, six EgWRKY genes with more than two-folded increased expression level under cold stress were validated by RT-qPCR, which has higher expression level in cold, drought and high salinity treatment. The identification and characterization of WRKY gene family showed that EgWRKY were associated with a wide range of abiotic stress responses in Elaeis guineensis and some EgWRKY members with high expression levels could be selected for further research in analyzing their functions in the stress response in African oil palm.


Subject(s)
Arecaceae/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Stress, Physiological/genetics , Real-Time Polymerase Chain Reaction
5.
Front Plant Sci ; 7: 1578, 2016.
Article in English | MEDLINE | ID: mdl-27826307

ABSTRACT

The Palmae family contains 202 genera and approximately 2800 species. Except for Elaeis guineensis and Phoenix dactylifera, almost no genetic and genomic information is available for Palmae species. Therefore, this is an obstacle to the conservation and genetic assessment of Palmae species, especially those that are currently endangered. The study was performed to develop a large number of microsatellite markers which can be used for genetic analysis in different Palmae species. Based on the assembled genome of E. guineensis and P. dactylifera, a total of 814 383 and 371 629 microsatellites were identified. Among these microsatellites identified in E. guineensis, 734 509 primer pairs could be designed from the flanking sequences of these microsatellites. The majority (618 762) of these designed primer pairs had in silico products in the genome of E. guineensis. These 618 762 primer pairs were subsequently used to in silico amplify the genome of P. dactylifera. A total of 7 265 conserved microsatellites were identified between E. guineensis and P. dactylifera. One hundred and thirty-five primer pairs flanking the conserved SSRs were stochastically selected and validated to have high cross-genera transferability, varying from 16.7 to 93.3% with an average of 73.7%. These genome-wide conserved microsatellite markers will provide a useful tool for genetic assessment and conservation of different Palmae species in the future.

6.
PLoS One ; 9(12): e114482, 2014.
Article in English | MEDLINE | ID: mdl-25479236

ABSTRACT

Elaeis guineensis as a tropical oil-crop is particularly sensitive to low temperature. Improvement of cold-tolerance may significantly increase the total cultivation area of this tropical oil-crop worldwide. We sequenced cold-treated and control (untreated) samples of Elaeis guineensis. De novo assembly generated 51,452 unigenes with an average length of 703 bp. Subsequently, these expressed sequences were functionally annotated. In the K category (transcription factors) of COG (Cluster of Orthologous Group) annotation, the largest proportion of genes induced and repressed at least two-fold under cold stress were from the AP2/ERE family, indicating that C-repeat binding factor, (CBFs, members of the AP2/ERE family) may play a central role in cold tolerance in Elaeis guineensis. Subsequently, the CBF-mediated signal transduction pathway was reconstructed based on transcriptome data and the gene expression profile involving the pathway was examined using real-time quantitative RT-PCR (qRT-PCR). CBFs reached maximum transcript level both at medium (4 h) and long period time points (7 days), contrary to the expression pattern of CBFs in Arabidopsis and rice. Moreover, the promoters of downstream Cold Responsive gene (CORs) regulated by CBFs were analyzed. Conservation, mutation and absence of the DRE core motif were detected in the promoters of six CORs. These mutations in DRE motifs suggest that CORs may not be induced via cold stress in Elaeis guineensis.


Subject(s)
Arecaceae/metabolism , Cold-Shock Response/physiology , Gene Expression Regulation, Plant/physiology , Plant Proteins/biosynthesis , Arecaceae/genetics , Gene Expression Profiling , Plant Proteins/genetics
7.
J Biotechnol ; 184: 63-73, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-24862192

ABSTRACT

The African oil palm (Elaeis guineensis), which is grown in tropical and subtropical regions, is a highly productive oil-bearing crop. For gene expression-based analyses such as reverse transcription-quantitative real time PCR (RT-qPCR), reference genes are essential to provide a baseline with which to quantify relative gene expression. Normalization using reliable reference genes is critical in correctly interpreting expression data from RT-qPCR. In order to identify suitable reference genes in African oil palm, 17 transcriptomes of different tissues obtained from NCBI were systematically assessed for gene expression variation. In total, 53 putative candidate reference genes with coefficient of variation values <3.0 were identified: 18 in reproductive tissue and 35 in vegetative tissue. Analysis for enriched functions showed that approximately 90% of identified genes were clustered in cell component gene functions, and 12 out of 53 genes were traditional housekeeping genes. We selected and validated 16 reference genes chosen from leaf tissue transcriptomes by using RT-qPCR in sets of cold, drought and high salinity treated samples, and ranked expression stability using statistical algorithms geNorm, Normfinder and Bestkeeper. Genes encoding actin, adenine phosphoribosyltransferase and eukaryotic initiation factor 4A genes were the most stable genes over the cold, drought and high salinity stresses. Identification of stably expressed genes as reference gene candidates from multiple transcriptome datasets was found to be reliable and efficient, and some traditional housekeeping genes were more stably expressed than others. We provide a useful molecular genetic resource for future gene expression studies in African oil palm, facilitating molecular genetics approaches for crop improvement in this species.


Subject(s)
Arecaceae/genetics , Plant Oils , Real-Time Polymerase Chain Reaction/methods , Transcriptome/genetics , Algorithms , Arecaceae/metabolism , Gene Expression Regulation, Plant , Palm Oil , Plant Leaves/genetics , Reference Standards
8.
Biotechnol Biotechnol Equip ; 28(3): 417-424, 2014 May 04.
Article in English | MEDLINE | ID: mdl-26740762

ABSTRACT

The nucleotide-binding site (NBS)-leucine-rich repeat (LRR) gene family is a class of R genes in plants. NBS genes play a very important role in disease defence. To further study the variation and homology of mango NBS-LRR genes, 16 resistance gene analogues (RGAs) (GenBank accession number HM446507-22) were isolated from the polymerase chain reaction fragments and sequenced by using two degenerate primer sets. The total nucleotide diversity index Pi was 0.362, and 236 variation sites were found among 16 RGAs. The degree of homology between the RGAs varied from 44.4% to 98.5%. Sixteen RGAs could be translated into amino sequences. The high level of this homology in the protein sequences of the P-loop and kinase-2 of the NBS domain between the RGAs isolated in this study and previously characterized R genes indicated that these cloned sequences belonged to the NBS-LRR gene family. Moreover, these 16 RGAs could be classified into the non-TIR-NBS-LRR gene family because only tryptophan (W) could be claimed as the final residual of the kinase-2 domain of all RGAs isolated here. From our results, we concluded that our mango NBS-LRR genes possessed a high level of variation from the mango genome, which may allow mango to recognize many different pathogenic virulence factors.

9.
PLoS One ; 8(8): e71435, 2013.
Article in English | MEDLINE | ID: mdl-23951162

ABSTRACT

MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events.


Subject(s)
Arecaceae/genetics , Evolution, Molecular , MicroRNAs/genetics , RNA, Plant/genetics , Base Sequence , Genes, Plant , Genome, Plant , Molecular Sequence Data , Phylogeny , Segmental Duplications, Genomic , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...