Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 916: 170411, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38280597

ABSTRACT

The synergy effects between earthworms and microorganisms promote nitrogen mineralization and enhance stabilization of organic matters in a vermicomposting system. However, the stabilization pathways of vermicomposting in the system remain unknown. The aim of this study was to investigate the effect of earthworms on the stabilization pathway and associated microbial population of waste activated sludge recycled by vermicomposting. The treatment of sludge with and without earthworms was conducted at 20 °C for 60 days. The trends in organic matter (OM), dissolved organic carbon (DOC), NH4+-N, electrical conductivity (EC), microbial biomass carbon (MBC), and dehydrogenase activity (DHA) were similar in both systems over time. At the end of the treatment, OM and DOC were significantly lower (p < 0.05), and EC, NH4+-N, and NO3--N were significantly higher (p < 0.05) in the vermicomposting group than in the control. Based on the statistical results of principal component analysis (PCA), it was proposed that the stabilization pathway in both treatment systems required a sequence of reactions characterized by the degradation of organic matter, accumulation of dissolved organic carbon, ammonification, and nitrification. Vermicomposting led to greater abundance and diversity (Shannon index) of 16S rDNA microbial species, but more even distribution in microbial community composition (Simpson index) than the control. However, the opposite performance for 18S rDNA microbes was observed. Vermicomposting enhanced the abundance of microorganisms involved in organic matter degradation and nitrification, facilitating the conversion of organic matter and favoring the nitrification. In short, the pathway of sludge bio-stabilization is not altered regardless of the addition of earthworms or not, which enables us to better understand vermicomposting process of sludge.


Subject(s)
Oligochaeta , Sewage , Animals , Oligochaeta/metabolism , Dissolved Organic Matter , Nitrification , DNA, Ribosomal , Soil
2.
Environ Res ; 207: 112654, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34990606

ABSTRACT

Effect of temperature on antibiotic resistance genes (ARGs) during vermicomposting of domestic excess sludge remains poorly understood. Vermicomposting experiment with excess sludge was conducted at three different temperatures (15 °C, 20 °C, and 25 °C) to investigate the fate of ARGs, bacterial community and their relationship in the process. The vermicomposting at 25 °C did not significantly attenuate the targeted ARGs relative to that at 15 °C and 20 °C. The dynamics of qnrA, qnrS, and tetM genes during vermicomposting at 15 °C and 20 °C followed the first-order kinetic model. Temperature remarkably impacted bacterial diversity of the final products with the lowest Shannon index at 25 °C. The presence of the genus (Aeromonas and Chitinophagaceae) at 25 °C may contribute to the rebound of the genes (qnrA, qnrS and tetM). The study indicates that 20 °C is a suitable vermicomposting temperature to simultaneously reach the highest removal efficiency of the ARGs and the good biostability of the final product.


Subject(s)
Aeromonas , Oligochaeta , Aeromonas/genetics , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Oligochaeta/genetics , Sewage/microbiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...