Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Toxicol Appl Pharmacol ; 490: 117035, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019094

ABSTRACT

Exposure to particulate matter (PM10) can induce respiratory diseases that are closely related to bronchial hyperresponsiveness. However, the involved mechanism remains to be fully elucidated. This study aimed to demonstrate the effects of PM10 on the acetylcholine muscarinic 3 receptor (CHRM3) expression and the role of the ERK1/2 pathway in rat bronchial smooth muscle. A whole-body PM10 exposure system was used to stimulate bronchial hyperresponsiveness in rats for 2 and 4 months, accompanied by MEK1/2 inhibitor U0126 injection. The whole-body plethysmography system and myography were used to detect the pulmonary and bronchoconstrictor function, respectively. The mRNA and protein levels were determined by Western blotting, qPCR, and immunofluorescence. Enzyme-linked immunosorbent assay was used to detect the inflammatory cytokines. Compared with the filtered air group, 4 months of PM10 exposure significantly increased CHRM3-mediated pulmonary function and bronchial constriction, elevated CHRM3 mRNA and protein expression levels on bronchial smooth muscle, then induced bronchial hyperreactivity. Additionally, 4 months of PM10 exposure caused an increase in ERK1/2 phosphorylation and increased the secretion of inflammatory factors in bronchoalveolar lavage fluid. Treatment with the MEK1/2 inhibitor, U0126 inhibited the PM10 exposure-induced phosphorylation of the ERK1/2 pathway, thereby reducing the PM10 exposure-induced upregulation of CHRM3 in bronchial smooth muscle and CHRM3-mediated bronchoconstriction. U0126 could rescue PM10 exposure-induced pathological changes in the bronchus. In conclusion, PM10 exposure can induce bronchial hyperresponsiveness in rats by upregulating CHRM3, and the ERK1/2 pathway may be involved in this process. These findings could reveal a potential therapeutic target for air pollution induced respiratory diseases.

2.
J Environ Sci (China) ; 142: 248-258, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38527890

ABSTRACT

Brown carbon (BrC) is one of the important light absorption substances that have high light absorption ability under short wavelength light. However, limit studies have focused on the BrC emission from ships. In this study, size-segregated particulate matters (PM) were collected from three different types of ships, light absorption characteristics and size distribution of methanol-soluble BrC and water-soluble BrC in PM from ship exhausts were investigated. Results showed that four-stroke low-power diesel fishing boat (4-LDF) had the highest mass concentrations of methanol-soluble organic carbon (MSOC) and water-soluble organic carbon (WSOC), followed by 2-stroke high-power heavy-fuel-oil vessel (2-HHV), and four-stroke high-power marine-diesel vessel (4-HMV). While 2-HHV had obviously higher light absorption coefficients of methanol-soluble BrC (Abs365,M) and water-soluble BrC (Abs365,W) in unit weight of PM than the other two types of ships. The tested ships presented comparable or higher absorption efficiency of BrC in water extracts (MAE365,W) compared with other BrC emission sources. Majority of BrC was concentrated in fine particles, and the particle size distributions of both Abs365,M and Abs365,W showed bimodal patterns, peaking at 0.43-0.65 µm and 4.7-5.8 µm, respectively. However, different particle size distributions were found for MAE365,M between diesel and heavy fuel oil ships. Besides, different wavelength dependence in particles with different size were also detected. Ship exhaust could be confirmed as a non-ignorable BrC emission source, and complex influencing factor could affect the light absorption characteristics of ship emissions. Particle size should also be considered when light absorption ability of BrC was evaluated.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Ships , Carbon/analysis , Methanol , Environmental Monitoring/methods , Aerosols/analysis , Particulate Matter/analysis , Vehicle Emissions , Water , China
3.
Int J Surg ; 110(3): 1637-1644, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38079604

ABSTRACT

BACKGROUND: There are challenges for beginners to identify standard biliopancreatic system anatomical sites on endoscopic ultrasonography (EUS) images. Therefore, the authors aimed to develop a convolutional neural network (CNN)-based model to identify standard biliopancreatic system anatomical sites on EUS images. METHODS: The standard anatomical structures of the gastric and duodenal regions observed by EUS was divided into 14 sites. The authors used 6230 EUS images with standard anatomical sites selected from 1812 patients to train the CNN model, and then tested its diagnostic performance both in internal and external validations. Internal validation set tests were performed on 1569 EUS images of 47 patients from two centers. Externally validated datasets were retrospectively collected from 16 centers, and finally 131 patients with 85 322 EUS images were included. In the external validation, all EUS images were read by CNN model, beginners, and experts, respectively. The final decision made by the experts was considered as the gold standard, and the diagnostic performance between CNN model and beginners were compared. RESULTS: In the internal test cohort, the accuracy of CNN model was 92.1-100.0% for 14 standard anatomical sites. In the external test cohort, the sensitivity and specificity of CNN model were 89.45-99.92% and 93.35-99.79%, respectively. Compared with beginners, CNN model had higher sensitivity and specificity for 11 sites, and was in good agreement with the experts (Kappa values 0.84-0.98). CONCLUSIONS: The authors developed a CNN-based model to automatically identify standard anatomical sites on EUS images with excellent diagnostic performance, which may serve as a potentially powerful auxiliary tool in future clinical practice.


Subject(s)
Artificial Intelligence , Endosonography , Humans , Retrospective Studies , Neural Networks, Computer , Sensitivity and Specificity
4.
Liver Int ; 43(10): 2320-2322, 2023 10.
Article in English | MEDLINE | ID: mdl-37622287

ABSTRACT

Adenosquamous carcinoma of the liver is extremely rare. We report a case of adenosquamous carcinoma in the intrahepatic bile duct of a 56-year-old woman who complained of persistent abdominal pain, shivering and hyperthermia. Computed tomography demonstrated a solid-cystic neoplasm in segment 5/6/8 of the liver with a gradual enhancement pattern in the solid area. However, postoperative pathological examination showed adenosquamous carcinoma of intrahepatic bile duct.


Subject(s)
Carcinoma, Adenosquamous , Female , Humans , Middle Aged , Carcinoma, Adenosquamous/diagnostic imaging , Carcinoma, Adenosquamous/surgery , Liver/diagnostic imaging , Bile Ducts, Intrahepatic , Abdominal Pain , Postoperative Period
5.
Toxics ; 11(7)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37505602

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and their derivatives have received extensive attention due to their negative effects on the environment and on human health. However, few studies have performed comprehensive assessments of PAHs emitted from pesticide factories. This study assessed the concentration, composition, and health risk of 52 PM2.5-bound PAHs during the daytime and nighttime in the vicinity of a typical pesticide factory. The total concentration of 52 PAHs (Σ52PAHs) ranged from 53.04 to 663.55 ng/m3. No significant differences were observed between daytime and nighttime PAH concentrations. The average concentrations of twenty-two parent PAHs, seven alkylated PAHs, ten oxygenated PAHs, and twelve nitrated PAHs were 112.55 ± 89.69, 18.05 ± 13.76, 66.13 ± 54.79, and 3.90 ± 2.24 ng/m3, respectively. A higher proportion of high-molecular-weight (4-5 rings) PAHs than low-molecular-weight (2-3 rings) PAHs was observed. This was likely due to the high-temperature combustion of fuels. Analysis of diagnostic ratios indicated that the PAHs were likely derived from coal combustion and mixed sources. The total carcinogenic equivalent toxicity ranged from 15.93 to 181.27 ng/m3. The incremental lifetime cancer risk from inhalation, ingestion, and dermal contact with the PAHs was 2.33 × 10-3 for men and 2.53 × 10-3 for women, and the loss of life expectancy due to the PAHs was 11,915 min (about 0.023 year) for men and 12,952 min (about 0.025 year) for women. These results suggest that long-term exposure to PM2.5 emissions from a pesticide factory has significant adverse effects on health. The study results support implementing the characterization of PAH emissions from pesticide factories and provides a scientific basis for optimizing the living environment around pesticide factories.

6.
Environ Sci Technol ; 57(30): 11163-11172, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37406304

ABSTRACT

Optical characteristics and molecular compositions of brown carbon (BrC) were investigated during winter 2019 at a rural site of China with a focus on nitro-aromatic compounds (NACs) and imidazoles (IMs). The abundance of gaseous nitrophenols relative to CO during the campaign maximized at noontime, being similar to O3, while the particulate NACs during the haze periods strongly correlated with toluene and NO2, suggesting that NACs in the region are largely formed from the gas-phase photooxidation. Strong correlations of particulate IMs in the dry haze periods with the mass ratio of EC/PM2.5 and the concentration of levoglucosan were observed, indicating that IMs during the dry events are largely derived from biomass burning emissions. However, an increase in IMs with the increasing aerosol liquid water content and pH was observed in the humid haze events, along with much lower abundances of levoglucosan and K+ relative to PM2.5, suggesting that IMs were mostly formed from aqueous reactions in the humid haze periods. These IMs exponentially increased with an increasing NH3 owing to an aqueous reaction of carbonyls with free ammonia. Our findings for the first time revealed an enhancing effect of ammonia on BrC formation in China, especially in humid haze periods.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Particulate Matter/analysis , Ammonia , Carbon , China , Dust , Seasons , Coal , Gases , Aerosols/analysis , Environmental Monitoring
7.
Environ Int ; 175: 107934, 2023 05.
Article in English | MEDLINE | ID: mdl-37086491

ABSTRACT

People generally spend most of their time indoors, making indoor air quality be of great significance to human health. Large spatiotemporal heterogeneity of indoor air pollution can be hardly captured by conventional filter-based monitoring but real-time monitoring. Real-time monitoring is conducive to change air assessment mode from static and sparse analysis to dynamic and massive analysis, and has made remarkable strides in indoor air evaluation. In this review, the state of art, strengths, challenges, and further development of real-time sensors used in indoor air evaluation are focused on. Researches using real-time sensors for indoor air evaluation have increased rapidly since 2018, and are mainly conducted in China and the USA, with the most frequently investigated air pollutants of PM2.5. In addition to high spatiotemporal resolution, real-time sensors for indoor air evaluation have prominent advantages in 3-dimensional monitoring, pollution peak and source identification, and short-term health effect evaluation. Huge amounts of data from real-time sensors also facilitate the modeling and prediction of indoor air pollution. However, challenges still remain in extensive deployment of real-time sensors indoors, including the selection, performance, stability, as well as calibration of sensors. In future, sensors with high performance, long-term stability, low price, and low energy consumption are welcomed. Furthermore, more target air pollutants are also expected to be detected simultaneously by real-time sensors in indoor air monitoring.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Humans , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Calibration , China , Air Pollution/analysis , Particulate Matter/analysis
8.
Sci Total Environ ; 884: 163749, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37120026

ABSTRACT

High blood pressure associated with PM2.5 exposure is of great concern, especially for rural residents exposed to high PM2.5 levels. However, the impact of short-term exposure to high PM2.5 on blood pressure (BP) has not been well elucidated. Thus, this study aims to focus on the association between short-term PM2.5 exposure with BP of rural residents and its variation between summer and winter. Our results showed that the summertime PM2.5 exposure concentration was 49.3 ± 20.6 µg/m3, among which, mosquito coil users had 1.5-folds higher PM2.5 exposure than non-mosquito coil users (63.6 ± 21.7 vs 43.0 ± 16.7 µg/m3, p < 0.05). The mean systolic and diastolic BP (SBP and DBP, respectively) of rural participants were 122 ± 18.2 and 76.2 ± 11.2 mmHg in summer, respectively. The PM2.5 exposure, SBP, and DBP in summer were 70.7 µg/m3, 9.0 mmHg, and 2.8 mmHg lower than that in winter, respectively. Furthermore, the correlation between PM2.5 exposure and SBP was stronger in winter than that in summer, possibly due to higher PM2.5 exposure levels in winter. The transition of household energy from solid fuels in winter to clean fuels in summer would be benefit to the decline of PM2.5 exposure as well as BP. Results from this study suggested that the reduction of PM2.5 exposure would have positive effect on human health.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Humans , Blood Pressure , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Environmental Exposure/analysis
9.
Sci Total Environ ; 881: 163442, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37059143

ABSTRACT

Brown carbon (BrC) aerosols can affect not only the climate but also human health, however, the light absorption, chemical compositions, and formation mechanisms of BrC are still uncertain, which leads to uncertainties in the accurate estimation of its climate and health impacts. In this study, highly time - resolved brown carbon (BrC) in fine particles was investigated in Xi'an using offline aerosol mass spectrometer analysis. The light absorption coefficient (babs365) and mass absorption efficiency (MAE365) at 365 nm of water-soluble organic aerosol (WSOA) generally increased with oxygen-to-carbon (O/C) ratios, indicating that oxidized OA could have more impacts on BrC light absorption. Meanwhile, the light absorption appeared to increase generally with the increases of nitrogen-to-carbon (N/C) ratios and water-soluble organic nitrogen; strong correlations (R of 0.76 for CxHyNp+ and R of 0.78 for CxHyOzNp+) between babs365 and the N - containing organic ion families were observed, suggesting that the N - containing compounds are the effective BrC chromophores. babs365 correlated relatively well with BBOA (r of 0.74) and OOA (R of 0.57), but weakly correlated with CCOA (R of 0.33), indicating that BrC in Xi'an was likely to be associated with biomass burning and secondary sources. A multiple linear regression model was applied to apportion babs365 to contributions of different factors resolved from positive matrix factorization on water-soluble organic aerosols (OA) and obtained MAE365 values of different OA factors. We found that biomass-burning organic aerosol (BBOA) dominated the babs365 (48.3 %), followed by oxidized organic aerosol (OOA, 33.6 %) and coal combustion organic aerosol (CCOA, 18.1 %). We further observed that nitrogen-containing organic matter (i.e., CxHyNp+ and CxHyOzNp+) increased with the increase of OOA/WSOA and the decrease of BBOA/WSOA, especially under high ALWC conditions. Our work offered proper observation evidence that BBOA is oxidized through the aqueous formation to produce BrC in Xi'an, China.

10.
Environ Pollut ; 316(Pt 2): 120684, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36400138

ABSTRACT

To investigate the formation of secondary organic aerosol (SOA) under current atmospheric conditions, we conducted a field observation of SOA precursors in the downwind region of the Yangtze River Delta (YRD) in winter 2019 using a variety of offline and online instruments. During the entire observation period, the averaged fine particulate SOA was 7.9 ± 2.3 µg m-3, with precursor concentrations of 31 ± 11 ppbv for the measured volatile organic compounds (VOCs) and 16 ± 12 ppbv for NOx. Compared to those on the clean days, SOA on the haze days increased by a factor of 1.6, while the VOC and NOx increased by a factor of 1.3 and 2.0, respectively. Aerosol liquid water content (ALWC) and oxygenated VOCs (OVOCs, including acetaldehyde, formic acid, acetone, acetic acid, methyl ethyl ketone, and methylglyoxal) relationships suggested that the gasSOA and aqSOA occurred simultaneously on Chongming Island in winter. The gasSOA was primarily formed by the oxidation of aromatics and NOx at low RH (RH < 80%) conditions. In contrast, the aqSOA was formed under higher RH (RH > 80%) conditions via a combination of daytime photochemical aqueous phase processes of water-soluble OVOCs and nocturnal dark aqueous phase processes of primary emissions from biomass. The inversed higher mass ratio of NACs to (benzene + toluene) and nitrogen oxidation ratio (NOR) in the daytime during the gasSOA-dominated haze periods indicated that gasSOA could be transformed to aqSOA at high NOx levels. Our results also suggested the importance of NOx and VOC reduction measures in directly mitigating gasSOA and indirectly mitigating aqSOA during winter haze pollution.


Subject(s)
Volatile Organic Compounds , China , Environmental Pollution , Seasons , Water
11.
Sci Total Environ ; 857(Pt 2): 159578, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36270370

ABSTRACT

To understand the photooxidation mechanisms of aromatic compounds in the NOx-rich atmosphere, gaseous aromatics and their oxidization products (i.e., methyl glyoxal (MGLY), and nitrated phenols (NPs) including nitrophenols (NPhs) and methylnitrophenols (MNPs)) were measured with a 1-h time resolution on Chongming Island, a downwind region of the Yangtze River Delta (YRD) metropolitans of China in winter 2019 by using a proton-transfer-reaction mass spectrometer (PTR-MS). During the entire observation period, concentrations of the measured VOCs were 9.6 ± 7.1 ppbv for aromatics, 118 ± 59 pptv for MGLY, 36 ± 10 pptv for NPhs, and 9.3 ± 2.8 pptv for MNPs, respectively. Secondary NPs (SNPs) accounted for only 19-24 % of the total nitrated phenols during the clean and transition periods but increased to 44 % of the total on the hazy days. Moreover, the daytime mixing ratios of SNPs increased along with an increasing NO2 concentration during the clean and transition periods, but in the haze period the daytime SNPs first increased along with the increasing NO2 levels and then increased much more sharply when NO2 was >25 ppbv. Such highly proportional and sharply increased daytime SNPs in the haze period indicated an enhanced phenolic oxidation under the high NOx conditions. In addition, the lack of correlations between aromatics and MGLY, increased MGLYaro (MGLY produced by aromatics), and sharply increased ΔSNPs / Δ(benzene + toluene) further suggested that such an increasing role of the phenolic oxidative branch in the daytime oxidation process of aromatics during the YRD haze period was caused by the strong atmospheric oxidation capacity and the high level of NOx.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring , Nitrogen Dioxide , Nitrogen Oxides , Nitrates , China , Phenols , Oxidative Stress , Volatile Organic Compounds/analysis
12.
J Environ Sci (China) ; 124: 892-900, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182192

ABSTRACT

To understand the characteristics of atmospheric brown carbon (BrC), daily PM2.5 samples in Xingtai, a small city in North China Plain (NCP), during the four seasons of 2018-2019, were collected and analyzed for optical properties and chemical compositions. The light absorption at 365 nm (absλ=365 nm) displayed a strong seasonal variation with the highest value in winter (29.0±14.3 M/m), which was 3.2∼5.4-fold of that in other seasons. A strong correlation of absλ=365 nm with benzo(b)fluoranthene (BbF) was only observed in winter, indicating that coal combustion was the major source for BrC in the season due to the enhanced domestic heating. The mass absorbing efficiency of BrC also exhibited a similar seasonal pattern, and was found to correlate linearly with the aerosol pH, suggesting a positive effect of aerosol acidity on the optical properties and formation of BrC in the city. Positive matrix factorization (PMF) analysis further showed that on a yearly basis the major source for BrC was biomass burning, which accounted for 34% of the total BrC, followed by secondary formation (26.7%), coal combustion (21.3%) and fugitive dust (18%). However, the contribution from coal combustion was remarkably enhanced in winter, accounting for ∼40% of the total. Our work revealed that more efforts of "shifting coal to clean energy" are necessary in rural areas and small cities in NCP in order to further mitigate PM2.5 pollution in China.


Subject(s)
Air Pollutants , Coal , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Coal/analysis , Dust/analysis , Environmental Monitoring , Particulate Matter/analysis , Seasons , Water/chemistry
14.
Environ Pollut ; 314: 120329, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36195196

ABSTRACT

Water-soluble iron (ws-Fe) in PM2.5 plays a crucial role in biogeochemical cycles and atmospheric chemical processes. The anthropogenic sources of ws-Fe have attracted considerable attention owing to its high solubility. However, few studies have investigated the content of PM2.5 ws-Fe in the urban environment. In the present study, we characterized the spatial distributions of ws-Fe in six Chinese megacities in the winter of 2019. Furthermore, we investigated the speciation of PM2.5 ws-Fe (ws-Fe(II) and ws-Fe(III)), potential sources of ws-Fe, and association between ws-Fe and particle-bound reactive oxygen species (ROS). Higher ws-Fe concentrations were observed in northern cities (Harbin, Beijing, and Xi'an) than in southern cities (Chengdu, Wuhan, and Guangzhou). Moreover, atmospheric ws-Fe concentrations in urban China were several folds higher than those in urban areas of the United States and several orders of magnitude higher than those in remote oceans, indicating that China is a key contributor to global atmospheric ws-Fe. The dominant form of ws-Fe was ws-Fe(III) in Beijing, whereas ws-Fe(II) was more abundant in the other five cities. The concentrations of ws-Fe and ws-Fe(II) concentrations increased with increasing PM2.5 levels in all the six cities, however, we did not observe any consistent pattern of ws-Fe(III) concentration. Biomass burning was a dominant source of ws-Fe in all cities except Beijing. A strong positive correlation was observed between particle-bound ROS content and ws-Fe; this finding is consistent with those of previous studies indicating that ws-Fe in PM2.5 notably influences atmospheric chemical processes and human health.


Subject(s)
Air Pollutants , Particulate Matter , Humans , Cities , Particulate Matter/analysis , Air Pollutants/analysis , Reactive Oxygen Species/analysis , Environmental Monitoring , Water , Iron , Seasons , Beijing , Ferrous Compounds , China
15.
Sci Total Environ ; 852: 158501, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36063949

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) derivatives such as oxygenated PAHs (oPAHs) and nitrated PAHs (nPAHs), are receiving raising concerns due to their high toxic potential. Incomplete solid fuel combustion can release large quantities of PAHs derivatives, especially in low-efficiency domestic stoves. In this study, field measurements were conducted in rural Chinese homes to determine emissions of nPAHs and oPAHs from solid fuel combustion. A total of 12 fuel-stove combinations including cooking and space heating activities were investigated. Emission factors (EFs) of total nPAHs and oPAHs were in the range of 1.0-682.1 µg/kg and 0.01-131.7 mg/kg, respectively, with arithmetic means and stand deviations of 53.5 ± 72.5 µg/kg and 13.9 ± 24.4 mg/kg, respectively. The EFs of nPAHs and oPAHs for coal combustion (including honeycomb briquette, coal chunk, and peat tested in this study) were 30.2 ± 28.1 µg/kg and 1.5 ± 2.9 mg/kg, respectively, much lower than that for biomass burning (p < 0.05). The combustion phase could significantly affect the PAHs derivative emissions with higher emissions at initial phase than that at stable phase. Fuel type was found to affect the EFs, composition profiles, and ratios of PAHs derivatives to parent PAHs. This study tries to have an insight of PAHs derivative emissions from various solid fuel combustion, which would be useful in understanding the atmospheric PAHs derivative pollutions in China.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Heating , Air Pollutants/analysis , Nitrates , Cooking , Coal/analysis , China , Nitrogen Oxides , Soil , Environmental Monitoring , Particulate Matter/analysis
16.
Sci Total Environ ; 853: 158600, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36089047

ABSTRACT

Humic-like substances (HULIS) accounted for a great fraction of water-soluble organic matter (WSOM) in PM2.5, which efficiently absorb ultraviolet (UV) radiation and pose climate and health impacts. In this study, the molecular structure, optical properties, and oxidative potential (OP) of acid- and neutral-HULIS (denoted as HULIS-a, and HULIS-n, respectively), and high-polarity WSOM (HP-WSOM) were investigated in winter PM2.5 collected at six China's megacities. For both carbon levels and optical absorption coefficients (babs_365), HULIS-a/HULIS-n/HP-WSOM showed significant spatial differences. For each city, the carbon levels and babs_365 follow a similar order of HULIS-n > HULIS-a > HP-WSOM. Besides, the babs_365 of HULIS-n and HULIS-a showed the same order of Harbin > Beijing ≈ Wuhan > Xi'an > Guangzhou > Chengdu, while HP-WSOM exhibited an order of Wuhan > Chengdu > Xi'an > Harbin > Beijing > Guangzhou. Both HULIS-a and HULIS-n were abundant in aromatic and aliphatic compounds, whereas HP-WSOM was dominated by a carboxylic acid group. The OP (in unit of nmol H2O2 µg-1C) followed the order of HP-WSOM > HULIS-a > HULIS-n in all the cities. The OPs of HULIS-a, HULIS-n, and HP-WSOM in Harbin and Beijing were much higher than those of other cities, attributing to the high contribution from biomass burning. Highly positive correlations between reactive oxygen species (ROS) of HULIS-a and MAE365 were obtained in Chengdu, Wuhan, and Harbin, but ROS of HULIS-n had stronger correlation with MAE365 in Harbin, Chengdu, and Xi'an.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Aerosols/analysis , Cities , Water/chemistry , Reactive Oxygen Species , Environmental Monitoring , Hydrogen Peroxide , Humic Substances/analysis , Carbon/analysis , Beijing , Oxidative Stress , Air Pollutants/analysis
17.
Crit Rev Eukaryot Gene Expr ; 32(3): 83-93, 2022.
Article in English | MEDLINE | ID: mdl-35695612

ABSTRACT

MicroRNAs (miRNAs) act as critical biological factors in gastric cancer (GC). miR-1285 has been ascertained as a crucial antioncogene in some cancers. However, the effect of miR-1285 in GC and the regulatory mechanism are not clear. In this study, we revealed that miR-1285 expression was significantly reduced in GC. Overexpressing miR-1285 restrained GC cell multiplication and accelerated apoptosis, whereas suppressing miR-1285 facilitated cell growth and restrained apoptosis. The level of miR-1285 was negatively related to the RAB1A level in GC tissue specimens. RAB1A was verified by reporter gene assay as a target of miR-1285. Overexpression of miR-1285 suppressed the RAB1A level, whereas suppression of miR-1285 promoted the level of RAB1A expression. Knockdown of RAB1A resulted in analogical biological effect as that caused by overexpressing miR-1285. Moreover, both miR-1285 overexpression and RAB1A knockdown led to suppression of the mTOR/S6K1 pathway. By contrast, inhibition of miR-1285 promoted the mTOR/S6K1 pathway. In addition, miR-1285 also regulated the Bcl-2/Bax pathway. Taken together, our data indicate that miR-1285 suppresses GC cell multiplication by restraining the mTOR/S6K1 pathway and induces cell apoptosis by regulating the Bcl-2/Bax pathway via modulating RAB1A.


Subject(s)
MicroRNAs , Stomach Neoplasms , Apoptosis/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , TOR Serine-Threonine Kinases/genetics , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
18.
Environ Res ; 212(Pt D): 113545, 2022 09.
Article in English | MEDLINE | ID: mdl-35654152

ABSTRACT

Here we present seasonal chemical characteristics, formations, sources of PM2.5 in the year 2020 in Suzhou, Yangtze River Delta, China. Expectedly, organic matter (OM) found to be the most dominant component of PM2.5, with a year-average value of 10.3 ± 5.5 µg m-3, followed by NO3- (6.7 ± 6.5 µg m-3), SO42- (3.3 ± 2.5 µg m-3), NH4+ (3.2 ± 2.8 µg m-3), EC (1.1 ± 1.3 µg m-3), Cl- (0.57 ± 0.56 µg m-3), Ca2+ (0.55 ± 0.91 µg m-3), K+ (0.2 ± 1.0 µg m-3), Na+ (0.18 ± 0.45 µg m-3), and Mg2+ (0.09 ± 0.15 µg m-3). Seasonal variations of PM2.5 showed the highest average value in spring, followed by winter, fall, and summer. Meanwhile, the formation mechanisms of the major PM2.5 species (NO3-, SO42-, and OM) varied in seasons. Interestingly, NO2 may have the highest conversion rate to NO3- in spring, which might be linked with the nighttime chemistry due to the high relative humidity. Moreover, OM in summer was mainly produced by the daytime oxidation of volatile organic compounds, while local primary organic aerosols might play a significant role in other seasons. Source apportionment showed that the more-aged PM2.5 contributed significantly to the PM2.5 mass (42%), followed by the dust-related PM2.5 (38%) and the less-aged PM2.5 (21%). Potential contribution source function (PSCF) results indicated that aged PM2.5 were less affected by transportation than dust-related PM2.5.


Subject(s)
Air Pollutants , Rivers , Aerosols/analysis , Air Pollutants/analysis , China , Dust/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Rivers/chemistry , Seasons
19.
Environ Res ; 212(Pt C): 113357, 2022 09.
Article in English | MEDLINE | ID: mdl-35580669

ABSTRACT

A vehicular emission study was conducted in the longest inner-city tunnel in Xi'an, northwestern China in four time periods (I: 07:30-10:30, II: 11:00-14:00, III: 16:30-19:30, and IV: 20:00-23:00 LST). A sum of 40 PAHs, including parent (p-PAHs), alkylated (a-PAHs), and oxygenated (o-PAHs) in fine particulate matter (PM2.5) were quantified. The relationships between the PAHs and the formation of reactive oxygen species (ROS) were also studied. The average total quantified PAHs concentration was 236.3 ± 48.3 ng m-3. The p-PAHs were found to be the most dominated group, accounting for an average of 88.1% of the total quantified PAHs, followed by a-PAHs (6.1%) and o-PAHs (5.8%). On the base of the number of aromatic rings, the groups of ≤5 rings (92.5 ± 1.2%) had higher fractions than the high ones (≥6 rings, 7.5 ± 1.2%) for pPAHs. Diurnal variations of PAHs subgroups exhibited the highest levels in Period III, consistent with the largest traffic counts in evening rush hours. However, less reduction of few PAHs in the night period demonstrates that the emissions of compressed natural gas (CNG) and methanol-fueled vehicles cannot be ignored while their contribution increased. High ROS activity levels were observed in the traffic-dominated samples, implying the potential oxidative damages to humans. Additionally, diurnal variation of the ROS activity was consistent with the total quantified PAHs and toxic equivalency of benzo[a]pyrene. Good correlations (R > 0.6, p < 0.05) were seen between individual groups of PAHs (especially for 3-5 rings p-PAHs, 4 rings a-PAHs, and 2-3 rings o-PAHs) and ROS activity, supporting that the vehicular emitted PAHs possibly initiate oxidative stress. The multiple linear regression analysis further illustrated that chrysene contributed the highest (25.0%) to ROS activity. In addition to highlighting the potential hazards to the PAHs from the vehicular emission, their roles to mitigate the health effects by formations of ROS were firstly reported in northwestern China.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , China , Environmental Monitoring , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Reactive Oxygen Species/analysis , Vehicle Emissions/analysis , Vehicle Emissions/toxicity
20.
Comp Med ; 72(2): 93-103, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35410634

ABSTRACT

Altered energy metabolism (glucose, lipid, amino acid) is a hallmark of cancer growth that provides the theoretical basis for the development of metabolic therapies as cancer treatments. ATP is one of the major biochemical constituents of the tumor microenvironment. ATP promotes tumor progression or suppression depending on various factors, including concentration and tumor type. Here we evaluated the antitumor effect of extracellular ATP on melanoma and the potential underlying mechanisms. A subcutaneous tumor model in mice was used to investigate the antitumor effects of ATP. Major lymphocyte cell changes and intratumoral metabolic changes were assessed. Metabolomic analysis (1H nuclear magnetic resonance spectroscopy) was performed on tumor samples. We measured the activities of lactate dehydrogenase A (LDHA) and LDHB in the excised tumors and serum and found that ATP and its metabolites affected the proliferation of and LDHA activity in B16F10 cells, a murine melanoma cell line. In addition, treatment with ATP dose-dependently reduced tumor size in melanoma-bearing mice. Moreover, flow cytometry analysis demonstrated that the antitumor effect of ATP was not achieved through changes in T-cell or B-cell subsets. Metabolomics analysis revealed that ATP treatment simultaneously reduced multiple intratumoral metabolites related to energy metabolism as well as serum and tumor LDHA activities. Furthermore, both ATP and its metabolites significantly suppressed both tumor cell proliferation and LDHA activity in the melanoma cell line. Our results in vivo and in vitro indicate that exogenous ATP inhibits melanoma growth in association with altered intratumoral metabolism.


Subject(s)
L-Lactate Dehydrogenase , Melanoma , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation , Lactate Dehydrogenase 5 , Melanoma/drug therapy , Melanoma/pathology , Mice , Mice, Inbred C57BL , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...