Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 9(95): eadk0865, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701189

ABSTRACT

Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.


Subject(s)
B-Lymphocytes , Cytokines , Encephalomyelitis, Autoimmune, Experimental , Inflammation , Multiple Sclerosis , Oxidative Phosphorylation , Animals , Multiple Sclerosis/immunology , Humans , Cytokines/immunology , Cytokines/metabolism , Mice , B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/immunology , Female , Male , Mice, Inbred C57BL , Adult , Adenosine Triphosphate/metabolism , Middle Aged
2.
Int Immunopharmacol ; 123: 110748, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37531831

ABSTRACT

Acupuncture at ST36 can alleviate a variety of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), while the specific mechanism for the treatment of EAE is not clear. In this study, we found that acupuncture at ST36 can significantly increase the excitability of splenic sympathetic nerve, and promote the differentiation of peripheral B and CD4+T cells in the anti-inflammatory direction. After blocking the splenic sympathetic nerve with 6-OHDA, this anti-inflammatory effect of acupuncture is partially reversed. In addition, the results of western blot and qPCR showed that acupuncture at ST36 simultaneously activated the ß2-AR-cAMP signaling pathway in the splenic B and CD4+T cells, and this activation was more significant in B cells. In vitro, when CD4+T cells were cultured alone, norepinephrine (NE) had no significant effect on their differentiation. While in the presence of B cells, NE significantly promotes the anti-inflammatory differentiation of B and CD4+T cells. Therefore, the above results reveal that acupuncture can relieve EAE by stimulating the sympathetic nerves of spleen, mainly through acting on B cells to mediate anti-inflammatory effects, and indirectly affecting the function of CD4+T cells.


Subject(s)
Acupuncture Therapy , Encephalomyelitis, Autoimmune, Experimental , Animals , Mice , T-Lymphocytes , Signal Transduction , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL
3.
Environ Toxicol ; 38(10): 2429-2439, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37436145

ABSTRACT

Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the metabolite of environmental pollutant benzo(a)pyrene (B(a)P) could induce pulmonary toxicity and inflammation. SIRT1, an NAD+ -dependent histone deacetylase, is known to regulate inflammation in the occurrence and development of various diseases, but its effects on BPDE-induced acute lung injury are still unknown. The present study aimed to explore the role of SIRT1 in BPDE-induced acute lung injury. Here, human bronchial epithelial (HBE) cells (BEAS-2B) cells were stimulated with BPDE at different concentrations (0.50, 0.75, and 1.00 µmol/L) for 24 h, we found that the levels of cytokines in the supernatant were increased and the expression of SIRT1 in cells was down-regulated, at the same time, BPDE stimulation up-regulated the protein expression of HMGB1, TLR4, and p-NF-κBp65 in BEAS-2B cells. Then the activator and inhibitor of SIRT1 were used before BPDE exposure, it was shown that the activation of SIRT1 significantly attenuated the levels of inflammatory cytokines and HMGB1, and reduced the expression of HMGB1, AC-HMGB1, TLR4, and p-NF-κBp65 protein; while these results were reversed by the inhibition of SIRT1. This study revealed that the SIRT1 activation may protect against BPDE-induced inflammatory damage in BEAS-2B cells by regulating the HMGB1/TLR4/NF-κB pathway.


Subject(s)
Acute Lung Injury , HMGB1 Protein , Humans , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Signal Transduction , Benzo(a)pyrene/toxicity , Sirtuin 1/metabolism , HMGB1 Protein/metabolism , Cytokines , Inflammation/chemically induced , Acute Lung Injury/chemically induced
4.
Am J Chin Med ; 50(3): 639-652, 2022.
Article in English | MEDLINE | ID: mdl-35282807

ABSTRACT

Autoimmune diseases (AIDs) are conditions arising from abnormal immune reactions to autoantigens, which can be defined as the loss of immune tolerance to autoantigens, causing the production of autoantibodies and subsequent inflammation and tissue injury. The etiology of AIDs remains elusive, which may involve both genetic and environmental factors, such as diet, drugs, and infections. Despite rapid progress in the treatment of autoimmune diseases over the past few decades, there is still no approach that can cure AIDs. As an alternative approach, traditional Chinese medicine (TCM) such as acupuncture has been used in an attempt to treat AIDs including multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD), and the results have proven to be quite promising, despite the fact that its mechanism is still not fully understood. In this review, the present knowledge regarding mechanisms of acupuncture in the treatment of AIDs has been summarized, and deeper insights will be provided in order to better understand how acupuncture may regulate immune responses during AIDs.


Subject(s)
Acquired Immunodeficiency Syndrome , Acupuncture Therapy , Arthritis, Rheumatoid , Autoimmune Diseases , Acquired Immunodeficiency Syndrome/complications , Acupuncture Therapy/methods , Arthritis, Rheumatoid/therapy , Autoantigens , Autoimmune Diseases/therapy , Humans
5.
Int Immunopharmacol ; 97: 107811, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34091117

ABSTRACT

Multiple sclerosis (MS) is a neurodegenerative and demyelinating autoimmune disease mediated by autoreactive T cells that affects the central nervous system (CNS). Electroacupuncture (EA) has emerged as an alternative or supplemental treatment for MS, but the mechanism by which EA may alleviate MS symptoms is unresolved. Here, we examined the effects of EA at the Zusanli (ST36) acupoint on mice with experimental autoimmune encephalomyelitis (EAE), the predominant animal model of MS. The effects of EA on EAE emergence, inflammatory cell levels, proinflammatory cytokines, and spinal cord pathology were examined. EA treatment attenuated the EAE clinical score and associated spinal cord demyelination, while reducing the presence of proinflammatory cytokines in mononuclear cells (MNCs), downregulating microRNA (miR)-155, and upregulating the opioid peptide precursor proopiomelanocortin (POMC) in the CNS. Experiments in which cultured neurons were transfected with a miR-155 mimic or a miR-155 inhibitor further showed that the direct modulation of miR-155 levels could regulate POMC levels in neurons. In conclusion, the alleviation of EAE by EA is characterized by reduced proportions of Th1/Th17 cells and increased proportions of Th2 cells, POMC upregulation, and miR-155 downregulation, while miR-155 itself can suppress POMC expression. These results, support the hypothesis that the effects of EA on EAE may involve the downregulation of miR-155.


Subject(s)
Electroacupuncture , Encephalomyelitis, Autoimmune, Experimental/therapy , MicroRNAs/metabolism , Multiple Sclerosis/therapy , Animals , Down-Regulation/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Humans , Mice , MicroRNAs/agonists , MicroRNAs/antagonists & inhibitors , Multiple Sclerosis/immunology , Pro-Opiomelanocortin/genetics , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...