Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1950-1960, 2023 12 25.
Article in English | MEDLINE | ID: mdl-37850269

ABSTRACT

Myocardial infarction (MI) results in high mortality. The size of fibrotic scar tissue following MI is an independent predictor of MI outcomes. Thioredoxin-interacting protein (TXNIP) is involved in various fibrotic diseases. Its role in post-MI cardiac fibrosis, however, remains poorly understood. In the present study, we investigate the biological role of TXNIP in post-MI cardiac fibrosis and the underlying mechanism using mouse MI models of the wild-type (WT), Txnip-knockout ( Txnip-KO) type and Txnip-knock-in ( Txnip-KI) type. After MI, the animals present with significantly upregulated TXNIP levels, and their fibrotic areas are remarkably expanded with noticeably impaired cardiac function. These changes are further aggravated under Txnip-KI conditions but are ameliorated in Txnip-KO animals. MI also leads to increased protein levels of the fibrosis indices Collagen I, Collagen III, actin alpha 2 (ACTA2), and connective tissue growth factor (CTGF). The Txnip-KI group exhibits the highest levels of these proteins, while the lowest levels are observed in the Txnip-KO mice. Furthermore, Txnip-KI significantly upregulates the levels of transforming growth factor (TGF)B1, p-Smad3, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), Cleaved Caspase-1, and interleukin (IL)1B after MI, but these effects are markedly offset by Txnip-KO. In addition, after MI, the Smad7 level significantly decreases, particularly in the Txnip-KI mice. TXNIP may aggravate the progression of post-MI fibrosis and cardiac dysfunction by activating the NLRP3 inflammasome, followed by IL1B generation and then the enhancement of the TGFB1/Smad3 pathway. As such, TXNIP might serve as a novel potential therapeutic target for the treatment of post-MI cardiac fibrosis.


Subject(s)
Inflammasomes , Myocardial Infarction , Animals , Mice , Collagen , Fibrosis , Inflammasomes/metabolism , Mice, Inbred NOD , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
2.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1380-1392, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37501512

ABSTRACT

Obesity-related cardiovascular diseases are associated with overactivation of the renin-angiotensin system (RAS). However, the underlying mechanisms remain elusive. In this study, we investigate the role of angiotensin II (Ang II) in high-fat diet (HFD)-induced cardiac dysfunction by focusing on cardiac glucose and lipid metabolism and energy supply. Ang II plays a role in cardiovascular regulation mainly by stimulating angiotensin II type 1 receptor (AT1R), among which AT1aR is the most important subtype in regulating the function of the cardiovascular system. AT1aR gene knockout (AT1aR ‒/‒) rats and wild-type (WT) rats are randomly divided into four groups and fed with either a normal diet (ND) or a HFD for 12 weeks. The myocardial lipid content, Ang II level and cardiac function are then evaluated. The expressions of a number of genes involved in glucose and fatty acid oxidation and mitochondrial dynamics are measured by quantitative polymerase chain reaction and western blot analysis. Our results demonstrate that AT1aR knockout improves HFD-induced insulin resistance and dyslipidemia as well as lipid deposition and left ventricular dysfunction compared with WT rats fed a HFD. In addition, after feeding with HFD, AT1aR ‒/‒ rats not only show further improvement in glucose and fatty acid oxidation but also have a reverse effect on increased mitochondrial fission proteins. In conclusion, AT1aR deficiency ameliorates HFD-induced cardiac dysfunction by enhancing glucose and fatty acid oxidation, regulating mitochondrial dynamics-related protein changes, and further promoting cardiac energy supply.


Subject(s)
Heart Diseases , Receptor, Angiotensin, Type 1 , Animals , Rats , Angiotensin II/metabolism , Diet, High-Fat , Fatty Acids , Glucose , Lipid Metabolism/genetics , Lipids , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism
3.
Cardiovasc Diagn Ther ; 12(3): 289-304, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35800356

ABSTRACT

Background: Myocardial infarction (MI) is a common cause of death. Thioredoxin-interacting protein (TXNIP) expression increases after MI, and it exerts a negative regulatory effect on cardiac function after MI. Our study aimed to investigate the specific regulatory mechanism of TXNIP on angiogenesis and cardiomyocyte apoptosis after MI. Methods: The TXNIP gene knock-in (TXNIP-KI) and knock-out (TXNIP-KO) mice were generated, respectively. Eight-week-old male TXNIP-KO, TXNIP-KI, and wild type (WT) mice were subjected to MI by permanent ligation of the left anterior descending artery. Cardiomyocyte apoptosis was detected by TUNEL assay on the 4th post-surgery day. The expressions of TXNIP, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), phosphorylated protein kinase B (p-AKT), p-AMP-activated protein kinase (p-AMPK), cleaved caspase-3, and caspase-3 were detected by Western blot. Quantitative real-time PCR was performed to detect the expression of TXNIP, HIF-1α, VEGF, prolyl hydroxylase (PHD) 1, and factor inhibiting HIF (FIH). In addition, the superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in each group were also measured. On day 7 after MI, the hearts of sacrificed animals were analyzed by immunohistochemistry to assess CD31 expression and determine the density of angiogenesis. One month after treatment, the cardiac functional and structural changes were determined by echocardiography and the level of myocardial fibrosis was observed by Masson staining. Results: Compared with WT mice, TXNIP-KO mice had a significantly improved cardiac functional recovery after MI, and the proportion of myocardial fibrosis area was dramatically reduced, cardiomyocyte apoptosis was decreased, and angiogenesis was significantly increased; TXNIP-KI mice reversed in these changes. The expression of HIF-1α, p-AKT, and p-AMPK increased after MI in TXNIP-KO mice, and the mRNA expression of PHD 1 and FIH decreased. TXNIP-KI mice reversed in these changes. Conclusions: After MI, TXNIP down-regulated the level of HIF-1α and VEGF, reduced the number of angiogenesis, increased cardiomyocyte apoptosis, and ultimately led to a poor prognosis of ischemic myocardium. TXNIP was a protein with negative effects after MI and was expected to be a target for the prevention and treatment of MI.

4.
PLoS One ; 17(7): e0267331, 2022.
Article in English | MEDLINE | ID: mdl-35802723

ABSTRACT

AIMS: The renin-angiotensin system (RAS) is over-activated and the serum angiotensin II (Ang II) level increased in obese patients, while their correlations were incompletely understood. This study aims to explore the role of Ang II in diet-induced obesity by focusing on adipose lipid anabolism and catabolism. METHODS: Rat model of AT1aR gene knockout were established to investigate the special role of Ang II on adipose lipid metabolism. Wild-type (WT) and AT1aR gene knockout (AT1aR-/-) SD rats were fed with normal diet or high-fat diet for 12 weeks. Adipose morphology and adipose lipid synthesis and lipolysis were examined. RESULTS: AT1aR deficiency activated lipolysis-related enzymes and increased the levels of NEFAs and glycerol released from adipose tissue in high-fat diet rats, while did not affect triglycerides synthesis. Besides, AT1aR knockout promoted energy expenditure and fatty acids oxidation in adipose tissue. cAMP levels and PKA phosphorylation in the adipose tissue were significantly increased in AT1aR-/- rats fed with high-fat. Activated PKA could promote adipose lipolysis and thus improved adipose histomorphology and insulin sensitivity in high-fat diet rats. CONCLUSIONS: AT1aR deficiency alleviated adipocyte hypertrophy in high-fat diet rats by promoting adipose lipolysis probably via cAMP/PKA pathway, and thereby delayed the onset of obesity and related metabolic diseases.


Subject(s)
Diet, High-Fat , Lipolysis , Obesity , Receptor, Angiotensin, Type 1 , Adipose Tissue/metabolism , Angiotensin II/metabolism , Animals , Diet, High-Fat/adverse effects , Fatty Acids, Nonesterified/metabolism , Gene Knockout Techniques , Obesity/genetics , Obesity/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/genetics
5.
Endocr Connect ; 11(4)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35294398

ABSTRACT

Elucidating the mechanisms of regulation of ß-cell proliferation is key to understanding the pathogenesis of diabetes mellitus. Txnip is a tumor suppressor that is upregulated in diabetes and plays an important role in the regulation of insulin sensitivity; however, its potential effect on pancreatic ß-cell proliferation remains unclear. Here, we evaluated the role of Txnip in pancreatic ß-cell compensatory proliferation by subjecting WT and Txnip knockout (KO) mice to a high-fat diet (HFD). Our results demonstrate that Txnip deficiency improves glucose tolerance and increases insulin sensitivity in HFD-induced obesity. The antidiabetogenic effect of Txnip deficiency was accompanied by increased ß-cell proliferation and enhanced ß-cell mass expansion. Furthermore, Txnip deficiency modulated the expression of a set of transcription factors with key roles in ß-cell proliferation and cell cycle regulation. Txnip KO in HFD mice also led to activated levels of p-PI3K, p-AKT, p-mTOR and p-GSK3ß, suggesting that Txnip may act via PI3K/AKT signaling to suppress ß-cell proliferation. Thus, our work provides a theoretical basis for Txnip as a new therapeutic target for the treatment of diabetes mellitus.

6.
Acta Biochim Biophys Sin (Shanghai) ; 53(6): 784-795, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33928341

ABSTRACT

Autoantibody against the angiotensin II type I receptor (AT1-AA) has been found in the serum of patients with diabetes mellitus (DM). However, it remains unclear whether AT1-AA induces ß-cell apoptosis and participates in the development of DM. In this study, an AT1-AA-positive rat model was set up by active immunization, and AT1-AA IgG was purified. INS-1 cells were treated with AT1-AA, and cell viability, apoptosis, and autophagy-related proteins were detected by Cell Counting Kit-8 assay, flow cytometry, and western blot analysis, respectively. Results showed that existence of AT1-AA impaired the islet function and increased the apoptosis of pancreatic islet cells in rats, and the autophagy level in rat pancreatic islet tissues tended to increase gradually with the prolongation of immunization time. AT1-AA markedly reduced INS-1 cell viability, promoted cell apoptosis, and decreased insulin secretion in vitro. In addition, the autophagy level was gradually increased along with the prolongation of AT1-AA treatment time. Meanwhile, it was determined that treatment with autophagy inhibitor 3-methyladenine and angiotensin II type 1 receptor (AT1R) blocker telmisartan could improve insulin secretion and apoptosis in vitro and in vivo. In conclusion, it is deduced that upregulation of autophagy contributed to the AT1-AA-induced ß-cell apoptosis and islet dysfunction, and AT1R mediated the signal transduction.


Subject(s)
Apoptosis/drug effects , Autoantibodies/immunology , Autoantibodies/pharmacology , Autophagy/drug effects , Cell Survival/drug effects , Diabetes Mellitus, Experimental/immunology , Immunoglobulin G/immunology , Immunoglobulin G/pharmacology , Insulin-Secreting Cells/metabolism , Receptor, Angiotensin, Type 1/immunology , Adenine/analogs & derivatives , Adenine/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Apoptosis/immunology , Autoantibodies/isolation & purification , Autophagy/immunology , Cell Line, Tumor , Cell Survival/immunology , Immunization/methods , Immunoglobulin G/isolation & purification , Insulin Secretion/drug effects , Insulin Secretion/immunology , Male , Rats , Signal Transduction/drug effects , Signal Transduction/immunology , Telmisartan/pharmacology , Up-Regulation/drug effects , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...