Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cells ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38727295

ABSTRACT

Strain differences have been reported for motor behaviors, and only a subset of spinal cord injury (SCI) patients develop neuropathic pain, implicating genetic or genomic contribution to this condition. Here, we evaluated neuropsychiatric behaviors in A/J, BALB/c, and C57BL/6 male mice and tested genetic or genomic alterations following SCI. A/J and BALB/c naive mice showed significantly less locomotor activity and greater anxiety-like behavior than C57BL/6 mice. Although SCI elicited locomotor dysfunction, C57BL/6 and A/J mice showed the best and the worst post-traumatic recovery, respectively. Mild (m)-SCI mice showed deficits in gait dynamics. All moderate/severe SCI mice exhibited similar degrees of anxiety/depression. mSCI in BALB/c and A/J mice resulted in depression, whereas C57BL/6 mice did not exhibit depression. mSCI mice had significantly lower mechanical thresholds than their controls, indicating high cutaneous hypersensitivity. C57BL/6, but not A/J and BLAB/c mice, showed significantly lower heat thresholds than their controls. C57BL/6 mice exhibited spontaneous pain. RNAseq showed that genes in immune responses and wound healing were upregulated, although A/J mice showed the largest increase. The cell cycle and the truncated isoform of trkB genes were robustly elevated in SCI mice. Thus, different genomics are associated with post-traumatic recovery, underscoring the likely importance of genetic factors in SCI.


Subject(s)
Depression , Hyperalgesia , Locomotion , Spinal Cord Injuries , Animals , Spinal Cord Injuries/genetics , Spinal Cord Injuries/physiopathology , Hyperalgesia/genetics , Locomotion/genetics , Mice , Depression/genetics , Depression/physiopathology , Male , Mice, Inbred C57BL , Disease Models, Animal , Species Specificity
2.
J Neuroinflammation ; 20(1): 197, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653491

ABSTRACT

BACKGROUND: Medical advances have made it increasingly possible for spinal cord injury (SCI) survivors to survive decades after the insult. But how SCI affects aging changes and aging impacts the injury process have received limited attention. Extracellular vesicles (EVs) are recognized as critical mediators of neuroinflammation after CNS injury, including at a distance from the lesion site. We have previously shown that SCI in young male mice leads to robust changes in plasma EV count and microRNA (miR) content. Here, our goal was to investigate the impact of biological sex and aging on EVs and brain after SCI. METHODS: Young adult age-matched male and female C57BL/6 mice were subjected to SCI. At 19 months post-injury, total plasma EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis (NTA). EVs miR cargo was examined using the Fireplex® assay. The transcriptional changes in the brain were assessed by a NanoString nCounter Neuropathology panel and validated by Western blot (WB) and flow cytometry (FC). A battery of behavioral tests was performed for assessment of neurological function. RESULTS: Transcriptomic changes showed a high number of changes between sham and those with SCI. Sex-specific changes were found in transcription networks related to disease association, activated microglia, and vesicle trafficking. FC showed higher microglia and myeloid counts in the injured tissue of SCI/Female compared to their male counterparts, along with higher microglial production of ROS in both injured site and the brain. In the latter, increased levels of TNF and mitochondrial membrane potential were seen in microglia from SCI/Female. WB and NTA revealed that EV markers are elevated in the plasma of SCI/Male. Particle concentration in the cortex increased after injury, with SCI/Female showing higher counts than SCI/Male. EVs cargo analysis revealed changes in miR content related to injury and sex. Behavioral testing confirmed impairment of cognition and depression at chronic time points after SCI in both sexes, without significant differences between males and females. CONCLUSIONS: Our study is the first to show sexually dimorphic changes in brain after very long-term SCI and supports a potential sex-dependent EV-mediated mechanism that contributes to SCI-induced brain changes.


Subject(s)
Neuroinflammatory Diseases , Spinal Cord Injuries , Female , Male , Animals , Mice , Mice, Inbred C57BL , Brain , Spinal Cord Injuries/complications , Cognition
3.
Brain Behav Immun ; 114: 22-45, 2023 11.
Article in English | MEDLINE | ID: mdl-37557959

ABSTRACT

Approximately 20-68% of traumatic brain injury (TBI) patients exhibit trauma-associated olfactory deficits (OD) which can compromise not only the quality of life but also cognitive and neuropsychiatric functions. However, few studies to date have examined the impact of experimental TBI on OD. The present study examined inflammation and neuronal dysfunction in the olfactory bulb (OB) and the underlying mechanisms associated with OD in male mice using a controlled cortical impact (CCI) model. TBI caused a rapid inflammatory response in the OB as early as 24 h post-injury, including elevated mRNA levels of proinflammatory cytokines, increased numbers of microglia and infiltrating myeloid cells, and increased IL1ß and IL6 production in these cells. These changes were sustained for up to 90 days after TBI. Moreover, we observed significant upregulation of the voltage-gated proton channel Hv1 and NOX2 expression levels, which were predominantly localized in microglia/macrophages and accompanied by increased reactive oxygen species production. In vivo OB neuronal firing activities showed early neuronal hyperexcitation and later hypo-neuronal activity in both glomerular layer and mitral cell layer after TBI, which were improved in the absence of Hv1. In a battery of olfactory behavioral tests, WT/TBI mice displayed significant OD. In contrast, neither Hv1 KO/TBI nor NOX2 KO/TBI mice showed robust OD. Finally, seven days of intranasal delivery of a NOX2 inhibitor (NOX2ds-tat) ameliorated post-traumatic OD. Collectively, these findings highlight the importance of OB neuronal networks and its role in TBI-mediated OD. Thus, targeting Hv1/NOX2 may be a potential intervention for improving post-traumatic anosmia.


Subject(s)
Brain Injuries, Traumatic , Olfaction Disorders , Humans , Male , Mice , Animals , Olfactory Bulb , Quality of Life , Brain Injuries, Traumatic/metabolism , Smell/physiology , Microglia/metabolism , Olfaction Disorders/etiology , Mice, Inbred C57BL , Disease Models, Animal
4.
Res Sq ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37131758

ABSTRACT

Approximately 20% of all spinal cord injuries (SCI) occur in persons aged 65 years or older. Longitudinal, population-based studies showed that SCI is a risk factor for dementia. However, little research has addressed the potential mechanisms of SCI-mediated neurological impairment in the elderly. We compared young adult and aged C57BL/6 male mice subjected to contusion SCI, using a battery of neurobehavioral tests. Locomotor function showed greater impairment in aged mice, which was correlated with reduced, spared spinal cord white matter and increased lesion volume. At 2 months post-injury, aged mice displayed worse performance in cognitive and depressive-like behavioral tests. Transcriptomic analysis identified activated microglia and dysregulated autophagy as the most significantly altered pathways by both age and injury. Flow cytometry demonstrated increased myeloid and lymphocyte infiltration at both the injury site and brain of aged mice. SCI in aged mice was associated with altered microglial function and dysregulated autophagy involving both microglia and brain neurons. Altered plasma extracellular vesicles (EVs) responses were found in aged mice after acute SCI. EV-microRNA cargos were also significantly altered by aging and injury, which were associated with neuroinflammation and autophagy dysfunction. In cultured microglia, astrocytes, and neurons, plasma EVs from aged SCI mice, at a lower concentration comparable to those of young adult SCI mice, induced the secretion of pro-inflammatory cytokines CXCL2 and IL-6, and increased caspase3 expression. Together, these findings suggest that age alters the EVs pro-inflammatory response to SCI, potentially contributing to worse neuropathological and functional outcomes.

5.
Sci Adv ; 9(10): eadd1101, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36888713

ABSTRACT

Lipofuscin is an autofluorescent (AF) pigment formed by lipids and misfolded proteins, which accumulates in postmitotic cells with advanced age. Here, we immunophenotyped microglia in the brain of old C57BL/6 mice (>18 months old) and demonstrate that in comparison to young mice, one-third of old microglia are AF, characterized by profound changes in lipid and iron content, phagocytic activity, and oxidative stress. Pharmacological depletion of microglia in old mice eliminated the AF microglia following repopulation and reversed microglial dysfunction. Age-related neurological deficits and neurodegeneration after traumatic brain injury (TBI) were attenuated in old mice lacking AF microglia. Furthermore, increased phagocytic activity, lysosomal burden, and lipid accumulation in microglia persisted for up to 1 year after TBI, were modified by APOE4 genotype, and chronically driven by phagocyte-mediated oxidative stress. Thus, AF may reflect a pathological state in aging microglia associated with increased phagocytosis of neurons and myelin and inflammatory neurodegeneration that can be further accelerated by TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Animals , Mice , Microglia/metabolism , Mice, Inbred C57BL , Brain Injuries/complications , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries, Traumatic/complications , Brain/metabolism , Phenotype , Lipids
6.
Theranostics ; 12(12): 5364-5388, 2022.
Article in English | MEDLINE | ID: mdl-35910787

ABSTRACT

Autophagy is a catabolic process that degrades cytoplasmic constituents and organelles in the lysosome, thus serving an important role in cellular homeostasis and protection against insults. We previously reported that defects in autophagy contribute to neuronal cell damage in traumatic spinal cord injury (SCI). Recent data from other inflammatory models implicate autophagy in regulation of immune and inflammatory responses, with low levels of autophagic flux associated with pro-inflammatory phenotypes. In the present study, we examined the effects of genetically or pharmacologically manipulating autophagy on posttraumatic neuroinflammation and motor function after SCI in mice. Methods: Young adult male C57BL/6, CX3CR1-GFP, autophagy hypomorph Becn1+/- mice, and their wildtype (WT) littermates were subjected to moderate thoracic spinal cord contusion. Neuroinflammation and autophagic flux in the injured spinal cord were assessed using flow cytometry, immunohistochemistry, and NanoString gene expression analysis. Motor function was evaluated with the Basso Mouse Scale and horizontal ladder test. Lesion volume and spared white matter were evaluated by unbiased stereology. To stimulate autophagy, disaccharide trehalose, or sucrose control, was administered in the drinking water immediately after injury and for up to 6 weeks after SCI. Results: Flow cytometry demonstrated dysregulation of autophagic function in both microglia and infiltrating myeloid cells from the injured spinal cord at 3 days post-injury. Transgenic CX3CR1-GFP mice revealed increased autophagosome formation and inhibition of autophagic flux specifically in activated microglia/macrophages. NanoString analysis using the neuroinflammation panel demonstrated increased expression of proinflammatory genes and decreased expression of genes related to neuroprotection in Becn1+/- mice as compared to WT controls at 3 days post-SCI. These findings were further validated by qPCR, wherein we observed significantly higher expression of proinflammatory cytokines. Western blot analysis confirmed higher protein expression of the microglia/macrophage marker IBA-1, inflammasome marker, NLRP3, and innate immune response markers cGAS and STING in Becn1+/- mice at 3 day after SCI. Flow cytometry demonstrated that autophagy deficit did not affect either microglial or myeloid counts at 3 days post-injury, instead resulting in increased microglial production of proinflammatory cytokines. Finally, locomotor function showed significantly worse impairments in Becn1+/- mice up to 6 weeks after SCI, which was accompanied by worsening tissue damage. Conversely, treatment with a naturally occurring autophagy inducer trehalose, reduced protein levels of p62, an adaptor protein targeting cargo to autophagosomes as well as the NLRP3, STING, and IBA-1 at 3 days post-injury. Six weeks of trehalose treatment after SCI led to improved motor function recovery as compared to control group, which was accompanied by reduced tissue damage. Conclusions: Our data indicate that inhibition of autophagy after SCI potentiates pro-inflammatory activation in microglia and is associated with worse functional outcomes. Conversely, increasing autophagy with trehalose, decreased inflammation and improved outcomes. These findings highlight the importance of autophagy in spinal cord microglia and its role in secondary injury after SCI.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Spinal Cord Injuries , Animals , Autophagy , Cytokines/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Spinal Cord Injuries/complications , Trehalose/metabolism , Trehalose/pharmacology
7.
Geroscience ; 44(3): 1407-1440, 2022 06.
Article in English | MEDLINE | ID: mdl-35451674

ABSTRACT

Elderly patients with traumatic brain injury (TBI) have greater mortality and poorer outcomes than younger individuals. The extent to which old age alters long-term recovery and chronic microglial activation after TBI is unknown, and evidence for therapeutic efficacy in aged mice is sorely lacking. The present study sought to identify potential inflammatory mechanisms underlying age-related outcomes late after TBI. Controlled cortical impact was used to induce moderate TBI in young and old male C57BL/6 mice. At 12 weeks post-injury, aged mice exhibited higher mortality, poorer functional outcomes, larger lesion volumes, and increased microglial activation. Transcriptomic analysis identified age- and TBI-specific gene changes consistent with a disease-associated microglial signature in the chronically injured brain, including those involved with complement, phagocytosis, and autophagy pathways. Dysregulation of phagocytic and autophagic function in microglia was accompanied by increased neuroinflammation in old mice. As proof-of-principle that these pathways have functional importance, we administered an autophagic enhancer, trehalose, in drinking water continuously for 8 weeks after TBI. Old mice treated with trehalose showed enhanced functional recovery and reduced microglial activation late after TBI compared to the sucrose control group. Our data indicate that microglia undergo chronic changes in autophagic regulation with both normal aging and TBI that are associated with poorer functional outcome. Enhancing autophagy may therefore be a promising clinical therapeutic strategy for TBI, especially in older patients.


Subject(s)
Brain Injuries, Traumatic , Microglia , Aged , Animals , Brain/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Microglia/pathology , Trehalose/metabolism
8.
Brain Behav Immun ; 101: 1-22, 2022 03.
Article in English | MEDLINE | ID: mdl-34954073

ABSTRACT

Whereas human spinal cord injury (SCI) is more common in men, the prevalence is growing in women. However, little is known about the effect of biological sex on brain dysfunction and injury mechanisms. To model the highest per capita rate of injury (ages between 16 and 30 years old) in humans, in the present study, young adult or a young/middle-aged male and female C57BL/6 mice were subjected to moderate contusion SCI. When mice were injured at 10-12-week-old, transcriptomic analysis of inflammation-related genes and flow cytometry revealed a more aggressive neuroinflammatory profile in male than females following 3 d SCI, ostensibly driven by sex-specific changes myeloid cell function rather than cell number. Female mice were generally more active at baseline, as evidenced by greater distance traveled in the open field. After SCI, female mice had more favorable locomotor function than male animals. At 13 weeks post-injury, male mice showed poor performance in cognitive and depressive-like behavioral tests, while injured female mice showed fewer deficits in these tasks. However, when injured at 6 months old followed by 8 months post-injury, male mice had considerably less inflammatory activation compared with female animals despite having similar or worse outcomes in affective, cognitive, and motor tasks. Collectively, these findings indicate that sex differences in functional outcome after SCI are associated with the age at onset of injury, as well as disrupted neuroinflammation not only at the site of injury but also in remote brain regions. Thus, biological sex should be considered when designing new therapeutic agents.


Subject(s)
Sex Characteristics , Spinal Cord Injuries , Animals , Brain , Female , Humans , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neuroinflammatory Diseases , Recovery of Function/physiology , Spinal Cord
9.
Front Cell Neurosci ; 14: 594170, 2020.
Article in English | MEDLINE | ID: mdl-33250718

ABSTRACT

Injuries in the central nervous system (CNS) often causes neuronal loss and glial scar formation. We have recently demonstrated NeuroD1-mediated direct conversion of reactive glial cells into functional neurons in adult mouse brains. Here, we further investigate whether such direct glia-to-neuron conversion technology can reverse glial scar back to neural tissue in a severe stab injury model of the mouse cortex. Using an adeno-associated virus (AAV)-based gene therapy approach, we ectopically expressed a single neural transcription factor NeuroD1 in reactive astrocytes in the injured areas. We discovered that the reactive astrocytes were efficiently converted into neurons both before and after glial scar formation, and the remaining astrocytes proliferated to repopulate themselves. The astrocyte-converted neurons were highly functional, capable of firing action potentials and establishing synaptic connections with other neurons. Unexpectedly, the expression of NeuroD1 in reactive astrocytes resulted in a significant reduction of toxic A1 astrocytes, together with a significant decrease of reactive microglia and neuroinflammation. Furthermore, accompanying the regeneration of new neurons and repopulation of new astrocytes, new blood vessels emerged and blood-brain-barrier (BBB) was restored. These results demonstrate an innovative neuroregenerative gene therapy that can directly reverse glial scar back to neural tissue, opening a new avenue for brain repair after injury.

10.
Theranostics ; 10(25): 11376-11403, 2020.
Article in English | MEDLINE | ID: mdl-33052221

ABSTRACT

Neuropsychological deficits, including impairments in learning and memory, occur after spinal cord injury (SCI). In experimental SCI models, we and others have reported that such changes reflect sustained microglia activation in the brain that is associated with progressive neurodegeneration. In the present study, we examined the effect of pharmacological depletion of microglia on posttraumatic cognition, depressive-like behavior, and brain pathology after SCI in mice. Methods: Young adult male C57BL/6 mice were subjected to moderate/severe thoracic spinal cord contusion. Microglial depletion was induced with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX5622 administered starting either 3 weeks before injury or one day post-injury and continuing through 6 weeks after SCI. Neuroinflammation in the injured spinal cord and brain was assessed using flow cytometry and NanoString technology. Neurological function was evaluated using a battery of neurobehavioral tests including motor function, cognition, and depression. Lesion volume and neuronal counts were quantified by unbiased stereology. Results: Flow cytometry analysis demonstrated that PLX5622 pre-treatment significantly reduced the number of microglia, as well as infiltrating monocytes and neutrophils, and decreased reactive oxygen species production in these cells from injured spinal cord at 2-days post-injury. Post-injury PLX5622 treatment reduced both CD45int microglia and CD45hi myeloid counts at 7-days. Following six weeks of PLX5622 treatment, there were substantial changes in the spinal cord and brain transcriptomes, including those involved in neuroinflammation. These alterations were associated with improved neuronal survival in the brain and neurological recovery. Conclusion: These findings indicate that pharmacological microglia-deletion reduces neuroinflammation in the injured spinal cord and brain, improving recovery of cognition, depressive-like behavior, and motor function.


Subject(s)
Brain/drug effects , Cognitive Dysfunction/prevention & control , Microglia/drug effects , Organic Chemicals/administration & dosage , Spinal Cord Injuries/drug therapy , Administration, Oral , Animals , Behavior Observation Techniques , Behavior, Animal/drug effects , Behavior, Animal/physiology , Brain/cytology , Brain/immunology , Brain/pathology , Cognitive Dysfunction/immunology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Depression/diagnosis , Depression/etiology , Depression/prevention & control , Disease Models, Animal , Humans , Inflammation/drug therapy , Inflammation/pathology , Inflammation/physiopathology , Learning/drug effects , Learning/physiology , Male , Memory/drug effects , Memory/physiology , Mice , Microglia/immunology , Microglia/pathology , Motor Activity/drug effects , Motor Activity/physiology , Reactive Oxygen Species/metabolism , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/pathology , Spinal Cord Injuries/complications , Spinal Cord Injuries/immunology , Spinal Cord Injuries/pathology
11.
Front Cell Dev Biol ; 8: 591883, 2020.
Article in English | MEDLINE | ID: mdl-33425896

ABSTRACT

Spinal cord injury (SCI) often leads to impaired motor and sensory functions, partially because the injury-induced neuronal loss cannot be easily replenished through endogenous mechanisms. In vivo neuronal reprogramming has emerged as a novel technology to regenerate neurons from endogenous glial cells by forced expression of neurogenic transcription factors. We have previously demonstrated successful astrocyte-to-neuron conversion in mouse brains with injury or Alzheimer's disease by overexpressing a single neural transcription factor NeuroD1. Here we demonstrate regeneration of spinal cord neurons from reactive astrocytes after SCI through AAV NeuroD1-based gene therapy. We find that NeuroD1 converts reactive astrocytes into neurons in the dorsal horn of stab-injured spinal cord with high efficiency (~95%). Interestingly, NeuroD1-converted neurons in the dorsal horn mostly acquire glutamatergic neuronal subtype, expressing spinal cord-specific markers such as Tlx3 but not brain-specific markers such as Tbr1, suggesting that the astrocytic lineage and local microenvironment affect the cell fate after conversion. Electrophysiological recordings show that the NeuroD1-converted neurons can functionally mature and integrate into local spinal cord circuitry by displaying repetitive action potentials and spontaneous synaptic responses. We further show that NeuroD1-mediated neuronal conversion can occur in the contusive SCI model with a long delay after injury, allowing future studies to further evaluate this in vivo reprogramming technology for functional recovery after SCI. In conclusion, this study may suggest a paradigm shift from classical axonal regeneration to neuronal regeneration for spinal cord repair, using in vivo astrocyte-to-neuron conversion technology to regenerate functional new neurons in the gray matter.

12.
Stem Cell Reports ; 12(3): 488-501, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30745031

ABSTRACT

We have previously developed a cocktail of nine small molecules to convert human fetal astrocytes into neurons, but a nine-molecule recipe is difficult for clinical applications. Here, we identify a chemical formula with only three to four small molecules for astrocyte-to-neuron conversion. We demonstrate that modulation of three to four signaling pathways among Notch, glycogen synthase kinase 3, transforming growth factor ß, and bone morphogenetic protein pathways is sufficient to change an astrocyte into a neuron. The chemically converted human neurons can survive >7 months in culture, fire repetitive action potentials, and display robust synaptic burst activities. Interestingly, cortical astrocyte-converted neurons are mostly glutamatergic, while midbrain astrocyte-converted neurons can yield some GABAergic neurons in addition to glutamatergic neurons. When administered in vivo through intracranial or intraperitoneal injection, the four-drug combination can significantly increase adult hippocampal neurogenesis. Together, human fetal astrocytes can be chemically converted into functional neurons using three to four small molecules, bringing us one step forward for developing future drug therapy.


Subject(s)
Astrocytes/metabolism , Fetus/metabolism , Neurons/metabolism , Signal Transduction/physiology , Action Potentials/physiology , Cells, Cultured , GABAergic Neurons/metabolism , Glutamates/metabolism , Hippocampus/metabolism , Humans , Mesencephalon/metabolism , Neurogenesis/physiology , Synapses/metabolism
13.
Front Cell Neurosci ; 11: 316, 2017.
Article in English | MEDLINE | ID: mdl-29118695

ABSTRACT

Associative learning is a common way for information acquisition, and the integrative storage of multiple associated signals is essential for associative thinking and logical reasoning. In terms of the cellular mechanism for associative memory, our studies by behavioral task and cellular imaging demonstrate that paired whisker and odor stimulations lead to odorant-induced whisker motion and associative memory cell recruitment in the barrel cortex (BC), which is driven presumably by synapse innervation from co-activated sensory cortices. To confirm these associative memory cells and synapse innervations essential for associative memory and to examine their potential mechanisms, we studied a causal relationship between epigenetic process and memory cell/synapse recruitment by manipulating miRNAs and observing the changes from the recruitments of associative memory cells and synapse innervations to associative memory. Anti-miRNA-324 and anti-miRNA-133a in the BC significantly downregulate new synapse innervation, associative memory cell recruitment and odorant-induced whisker motion, where Tau-tubulin kinase-1 expression is increased. Therefore, the upregulated miRNA-324 in associative learning knocks down Ttbk1-mediated Tau phosphorylation and microtubule depolymerization, which drives the balance between polymerization and depolymerization toward the axon prolongation and spine stabilization to initiate new synapse innervations and to recruit associative memory cells.

14.
Hippocampus ; 26(4): 502-16, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26443682

ABSTRACT

Anxiety disorders are presumably associated with negative memory. Psychological therapies are widely used to treat this mental deficit in human beings based on the view that positive memory competes with negative memory and relieves anxiety status. Cellular and molecular processes underlying psychological therapies remain elusive. Therefore, we have investigated its mechanisms based on a mouse model in which food reward at one open-arm of the elevated plus-maze was used for training mice to form reward memory and challenge the open arms. Mice with the reward training showed increased entries and stay time in reward open-arm versus neutral open-arm as well as in open-arms versus closed-arms. Accompanying with reward memory formation and anxiety relief, glutamatergic synaptic transmission in dentate gyrus in vivo and dendritic spines in granule cells became upregulated. This synaptic up-regulation was accompanied by the expression of more protein kinase C (PKC) in the dendritic spines. The inhibition of PKC by chelerythrine impaired the formation of reward memory, the relief of anxiety-related behavior and the up-regulation of glutamate synapses. Our results suggest that reward-induced positive memory relieves mouse anxiety-related behavior by strengthening synaptic efficacy and PKC in the hippocampus, which imply the underlying cellular and molecular processes involved in the beneficial effects of psychological therapies treating anxiety disorders.


Subject(s)
Anxiety Disorders/therapy , Dentate Gyrus/enzymology , Memory/physiology , Protein Kinase C/metabolism , Reward , Synapses/enzymology , Animals , Anxiety Disorders/enzymology , Anxiety Disorders/pathology , Anxiety Disorders/psychology , Benzophenanthridines/pharmacology , Dendritic Spines/drug effects , Dendritic Spines/enzymology , Dendritic Spines/pathology , Dentate Gyrus/drug effects , Disease Models, Animal , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Glutamic Acid/metabolism , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory/drug effects , Mice, Inbred DBA , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Synapses/drug effects , Synapses/pathology , Up-Regulation
15.
Front Cell Neurosci ; 9: 320, 2015.
Article in English | MEDLINE | ID: mdl-26347609

ABSTRACT

Associative learning and memory are essential to logical thinking and cognition. How the neurons are recruited as associative memory cells to encode multiple input signals for their associated storage and distinguishable retrieval remains unclear. We studied this issue in the barrel cortex by in vivo two-photon calcium imaging, electrophysiology, and neural tracing in our mouse model that the simultaneous whisker and olfaction stimulations led to odorant-induced whisker motion. After this cross-modal reflex arose, the barrel and piriform cortices connected. More than 40% of barrel cortical neurons became to encode odor signal alongside whisker signal. Some of these neurons expressed distinct activity patterns in response to acquired odor signal and innate whisker signal, and others encoded similar pattern in response to these signals. In the meantime, certain barrel cortical astrocytes encoded odorant and whisker signals. After associative learning, the neurons and astrocytes in the sensory cortices are able to store the newly learnt signal (cross-modal memory) besides the innate signal (native-modal memory). Such associative memory cells distinguish the differences of these signals by programming different codes and signify the historical associations of these signals by similar codes in information retrievals.

16.
Mol Brain ; 5: 20, 2012 Jun 09.
Article in English | MEDLINE | ID: mdl-22681774

ABSTRACT

Anxiety is a prevalent psychological disorder, in which the atypical expression of certain genes and the abnormality of amygdala are involved. Intermediate processes between genetic defects and anxiety, pathophysiological characteristics of neural network, remain unclear. Using behavioral task, two-photon cellular imaging and electrophysiology, we studied the characteristics of neural networks in basolateral amygdala and the influences of metabotropic glutamate receptor (mGluR) on their dynamics in DBA/2 mice showing anxiety-related genetic defects. Amygdala neurons in DBA/2 high anxiety mice express asynchronous activity and diverse excitability, and their GABAergic synapses demonstrate weak transmission, compared to those in low anxiety FVB/N mice. mGluR1,5 activation improves the anxiety-like behaviors of DBA/2 mice, synchronizes the activity of amygdala neurons and strengthens the transmission of GABAergic synapses. The activity asynchrony of amygdala neurons and the weakness of GABA synaptic transmission are associated with anxiety-like behavior.


Subject(s)
Amygdala/physiopathology , Anxiety/physiopathology , Nerve Net/physiopathology , Receptors, Metabotropic Glutamate/metabolism , Synapses/physiology , gamma-Aminobutyric Acid/metabolism , Amygdala/drug effects , Amygdala/metabolism , Animals , Behavior, Animal/drug effects , Ion Channel Gating/drug effects , Mice , Mice, Inbred DBA , Models, Biological , Naphthols/pharmacology , Nerve Net/drug effects , Neurons/drug effects , Neurons/physiology , Propylene Glycols/pharmacology , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/agonists , Synapses/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...