Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Small ; : e2404957, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031994

ABSTRACT

Transition metal sulfides are investigation hotspots of anode material for sodium-ion batteries (SIBs) due to their structural diversity and high storage capacity. However, they are still plagued by inevitable volume expansion during sodiation/desodiation and an unclear energy storage mechanism. Herein, a one-step sulfidation-carbonization strategy is proposed for in situ confined growth of Cu1.96S nanoparticles in nitrogen-doped carbon (Cu1.96S@NC) using octahedral metal-organic framework (Cu-BTC) as a precursor and investigate the driving effect of Cu current collector on its sodium storage. The generation of S─C bonds in Cu1.96S@NC avoids the volume change and structural collapse of Cu1.96S nanoparticles during the cycling process and improves the adsorption and transport capacity of the material for Na+. More exciting, the Cu species in the Cu current collector are self-induced forming Cu2S quantum dots to enter the original anode material during the initial few charging and discharging cycles, which unique small-size effect and abundant edge-active sites enhance the energy storage capacity of Cu1.96S. Thus, the Cu1.96S@NC exhibits a superior first discharge capacity of 608.56 mAh g-1 at 0.2 A g-1 with an initial Coulomb efficiency (ICE) of 75.4%, as well as provides excellent rate performance and long cycle durability up to 2000 cycles.

2.
Article in English | MEDLINE | ID: mdl-39034713

ABSTRACT

SiOx-based anodes are of great promise for lithium-ion batteries due to their low working potential and high specific capacity. However, several issues involving large volume expansion during the lithiation process, low intrinsic conductivity, and unsatisfactory initial Coulombic efficiency (ICE) hinder their practical application. Here, an Fe-SiOx@C composite with significantly improved lithium-storage performance was successfully synthesized by combining Fe2+ modification with a carbon coating strategy. The results of both experiments and density functional theory calculations confirm that the Fe2+ modification not only effectively achieves uniform carbon coating but also weakens the bonding energy of the Si-O bond and boosts reversible lithiation/delithiation reactions, resulting in great improvement in the electrical conductivity, ICE, and reversible specific capacity of the as-obtained Fe-SiOx@C. Together with the coated carbon, the in situ-generated conductive Fe-based intermediates also ensure the electrical contact of active components, relieve the volume expansion, and maintain the structural integrity of the electrode during cycling. And the Fe-SiOx@C (x ≈ 1.5) electrode can deliver a high-rate capacity of 354 mA h g-1 at 2.0 A g-1 and long-term cycling stability (552.4 mA h g-1 at 0.5 A g-1 even after 500 cycles). The findings here provide a facile modification strategy to improve the electrochemical lithium-storage performance of SiOx-based anodes.

3.
J Colloid Interface Sci ; 673: 817-825, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38906003

ABSTRACT

Atmospheric water harvesting through reticular materials is an innovation that has the potential to change the world. Here, this study offers a technique for creating a solar-powered hygroscopic polymer material for atmospheric water harvesting with the reticular materials. The results show that the porous hygroscopic polymer materials can achieve high performance with high vapor capture (up to ac. 28.8-49.7 mg/g at 28-38 %RH and 25  â„ƒ), rapid photothermal conversion efficiency (up to 32.2 â„ƒ within 15 min under 1000 W/m-2 light at 25 â„ƒ), a low desorption temperature (lower than 40 â„ƒ), and an effective water release rate. Besides, the material also has excellent water-retention properties, which can effectively store desorbed liquid water in polymer networks for use by vegetation during water demand periods. The strategy opens new avenues for atmospheric water-harvesting materials, which will hopefully solve the global crisis of freshwater shortages.

4.
Int J Biol Macromol ; 269(Pt 2): 132158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718997

ABSTRACT

Atmospheric water harvesting (AWH) technology has attracted significant attention as an effective strategy to tackle the global shortage of freshwater resources. Work has focused on the use of hydrogel-based composite adsorbents in water harvesting and water conservation. The approaches adopted to make use of hygroscopic inorganic salts which subject to a "salting out" effect. In this study, we report the first use of modified UIO-66-NH2 as a functional steric cross-linker and Sa-son seed gum was used as polymeric substrate to construct super hygroscopic hydrogels by free radical copolymerization. The maximum water uptake on SMAGs (572 cm3·g-1) outperforms pure UIO-66-NH2 (317 cm3·g-1). Simultaneously, our first attempt to use it for anti-evaporation applications in an arid environment (Lanzhou, China) simulating sandy areas. The evaporation rate of the anti-evaporation material treated with 0.20 % super moisture-absorbent gels (SMAGs) decreased by 6.1 % over 64 h period under natural condition in Lanzhou, China. The prepared material can not only absorb liquid water but also water vapor, which can provide a new way for water collection and conservation technology. The design strategy of this material has wide applications ranging from atmospheric water harvesting materials to anti-evaporation technology.


Subject(s)
Metal-Organic Frameworks , Plant Gums , Steam , Water , Metal-Organic Frameworks/chemistry , Plant Gums/chemistry , Water/chemistry , Hydrogels/chemistry , Seeds/chemistry , Polymers/chemistry , Adsorption
5.
iScience ; 27(6): 109811, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799585

ABSTRACT

Magnesium-ion batteries (MIBs) a strong candidate to set off the second-generation energy storage boom due to their double charge transfer and dendrite-free advantages. However, the strong coulombic force and the huge diffusion energy barrier between Mg2+ and the electrode material have led to need for a cathode material that can enable the rapid and reversible de-insertion of Mg2+. So far, researchers have found that the sulfur-converted cathode materials have a greater application prospect due to the advantages of low price and high specific capacity, etc. Based on these advantages, it is possible to achieve the goal of increasing the magnesium storage capacity and cycling stability by reasonable modification of crystal or morphology. In this review, we focus on the application of a variety of sulfur-converted cathode materials in MIBs in recent years from the perspective of microstructural design, and provide an outlook on current challenges and future development.

6.
J Colloid Interface Sci ; 664: 893-901, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493654

ABSTRACT

Electrocatalysts are useful in lowering the energy barrier in oxygen reduction reaction (ORR). In this study, a catalyst with neighboring Fe single-atom and cluster is created by adsorbing a bimetallic Fe complex onto N-doped carbon and then pyrolyzing it. The resulting catalyst has good performance and a half-wave potential of 0.89 V. When used in Zn-air batteries, the voltage drops by only 8.13 % after 145 h of cycling. Theoretical studies show that electrons transfer from neighboring clusters to single atoms and the catalyst has a lower d-band center. These reduce intermediate desorption energy, hence improving ORR performance. This work demonstrates the capacity to adjust the catalytic properties through the interaction of diverse metal structures, which helps to design more efficient catalysts.

7.
ACS Appl Mater Interfaces ; 16(13): 16261-16270, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526992

ABSTRACT

The preparation of carbon materials by doping bimetallic oxides into triazine frameworks (COFs) is a promising electrocatalyst with the potential to replace precious metals in energy storage systems. In this experiment, a covalent triazine framework (COF) was synthesized by 1,4-dicyanobenzene (DCB) and zinc chloride, in which the COF and transition metals were used as carbon, nitrogen, cobalt, and iron sources. According to the properties of this COF, the destruction of the catalyst during pyrolysis can be prevented. The enhanced catalytic performance of the catalysts can be seen by testing all of the samples of catalysts in an alkaline medium. The high half-wave potential (E1/2) of 0.86 V is comparable to Pt/C and also shows excellent durability by testing. Zinc-air batteries were assembled using the prepared catalysts, and the batteries were tested for specific capacity (548 mAh g-1) and power density (189 mW cm-2). This work provides a new direction for COF-derived catalysts for carbon materials.

8.
Int J Biol Macromol ; 262(Pt 2): 130042, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342266

ABSTRACT

This paper introduces the synthesis of an environmentally friendly emulsion that can be used as a soil anti-water erosion material. SSPS-g-P(BA-co-MMA-co-AA) emulsions were prepared using free radical copolymerization with soybean soluble polysaccharide (SSPS), acrylic acid (AA), butyl acrylate (BA), and methyl methacrylate (MMA). The structure, thermal stability, and morphology were characterized using FT-IR,TG,SEM, and particle diameter analysis. The resistance to water erosion, compressive strength and water retention of emulsion-treated loess/laterite was studied and germination tests were conducted. The results demonstrated that the duration of washout resistance of loess with 0.50 wt% emulsion exceeded 99 h, and the water erosion rate was 56.0 % after 72 h, while the water erosion rate of pure loess is 100.0 % after 4 min;the duration of washout resistance of laterite with 0.50 wt% emulsion exceeded 2 h, which was 8 times longer than pure laterite;The compressive strengths of 0.5 wt% emulsion-treated loess/laterite were 3.5 Mpa and 5.8 MPa, respectively, which were 7 and 9 times higher than that of pure soil. The plant seeds germinated normally half a month after planting. These findings suggest that emulsions can be used to control soil erosion without affecting the germination of plant seeds.


Subject(s)
Acrylates , Glycine max , Soil Erosion , Emulsions/chemistry , Spectroscopy, Fourier Transform Infrared , Soil , Polysaccharides/chemistry , Water
9.
Chemistry ; 30(12): e202303320, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38126628

ABSTRACT

Covalent organic frameworks (COFs) are a class of porous crystalline polymeric materials constructed by linking organic small molecules through covalent bonds. COFs have the advantages of strong covalent bond network, adjustable pore structure, large specific surface area and excellent thermal stability, and have broad application prospects in various fields. Based on these advantages, rational COFs design strategies such as the introduction of active sites, construction of conjugated structures, and carbon material composite, etc. can effectively improve the conductivity and stability of the electrode materials in the field of batteries. This paper introduces the latest research results of high-performance COFs electrode materials in alkali metal-ion batteries (LIBs, SIBs, PIBs and LSBs) and other advanced batteries. The current challenges and future design directions of COFs-based electrode are discussed. It provides useful insights for the design of novel COFs structures and the development of high-performance alkali metal-ion batteries.

10.
Luminescence ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37994211

ABSTRACT

Due to the high affinity with water molecules, amide compounds are easily contaminated by moisture; therefore, the water interference effect cannot be totally excluded from the amide-involved reactions. Thus, the perfect solution is to use the interference effect but not shield it in a real application. In this work, we introduced different contents of sodium acrylate (AAS) to scavenge water from the monomers of N-isopropylacrylamide (NIPAm) when copolymerized with TPA-Vinyl-4CN. Herein, water molecules play a role as nucleophilic reagents to attack highly active functional groups as -C=C-CN from TPA-Vinyl-4CN, leading to a blue emissive TPA-Vinyl-2CHO. From this study, we made a deep awareness of the interactions between three reaction partners of AAS and NIPAm as well as TPA-Vinyl-4CN. Our results clearly demonstrated the fact that water can be perfectly used and controlled by the water absorbent of AAS, developing a new approach to synthesizing multiple emission-coloured polymers by using only one luminogen of TPA-Vinyl-4CN.

11.
ACS Appl Mater Interfaces ; 15(48): 55679-55691, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37978919

ABSTRACT

The development of cost-effective non-noble metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) opens up the possibility for sustainable energy systems. Herein, we report a surface overcoating strategy with lanthanum organic complex (La-OC) as the precursor to prepare lanthanum species (La-SPc) encapsulated in nitrogen, fluorine, and sulfur self-doped porous carbon (NFS-PC) composites (La-SPc@NFS-PC) for efficient ORR and OER. The La-SPc is introduced not only as a promoter to increase the electrochemical stability of the La-SPc@NFS-PC catalysts but also to tailor the electronic structure of NFS-PC due to the unique electrochemical properties of La-SPc. In addition, the integration of La-SPc and NFS-PC can improve the electronic conductivity of composites by inducing electron redistribution and lowering the band gap, which is advantageous in enhancing the kinetics of charge transfer. Simultaneously, benefiting from the optimized porous structure and positive cooperation of La-SPc with NFS-PC shells, the obtained La-SPc@NFS-PC-3 delivers robust bifunctional ORR/OER activities and stabilities. More importantly, the Zn-air battery (ZAB) assembled with La-SPc@NFS-PC-3 demonstrates an outstanding power density (181.1 mW cm-2) and long cycling life, outperforming the commercial Pt/C. This work offers a rational approach to preparing high-efficiency rare-earth-based catalysts and provides potential applications in ZABs.

12.
Chemistry ; 29(64): e202302502, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37621027

ABSTRACT

The development and utilization of green renewable energy are imperative with the aggravation of environmental pollution and energy crisis. In recent years, the exploration of electrochemical energy storage systems has gradually become a research hotspot in energy. Among them, aqueous zinc-ion batteries (ZIBs) have progressively developed into highly competitive and efficient energy storage devices owing to their inherent safety, natural abundance, and higher theoretical capacity. However, the practical application of ZIBs suffers from the limitation of challenges such as the absence of proper cathode materials and the unavoidable zinc dendrites and side reactions of Zn anode. Covalent organic frameworks (COFs) are an attractive class of electrode materials due to their inherent advantages, like structural designability, high stability, and ordered-open channels, bestowing them with great potential to overcome the problems of ZIBs. In this review, we concentrate on the discussion of designed strategies of COFs applied to ZIBs. Furthermore, the methods of using COFs to solve the challenging problems of cathode development, anode modification, and electrolyte optimization for ZIBs are summarized. Finally, the existing difficulties, solution measures, and prospects of COFs for ZIBs applications are discussed. Our commentary hopes to serve as a valuable reference for developing COFs-based ZIBs.

13.
Nanoscale ; 15(33): 13760-13769, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37578029

ABSTRACT

Sodium-ion batteries have been one of the most promising alternatives for lithium-ion batteries (LIBs) for large-scale energy storage systems due to cost-efficiency and rich resources of sodium. However, graphite, a commercial anode material of LIBs, shows a very low reversible capacity for sodium-ion storage because of the weak binding between sodium and graphite. Herein, an activated graphite (AG) material with abundant defects including edges and vacancies with oxygenic functional groups is well-designed and fabricated by a facile and eco-friendly ball-milling method. The structural evolutions during the ball-milling process and their effects on electrochemical sodium-ion storage performance are investigated. A stable reversible capacity of 139.1 mA h g-1 can be achieved at 1.0 A g-1 even after 4500 cycles for the AG-50 electrode with the 50-hour ball-milling treatment, amounting to a very low decay ratio of 0.0034% per cycle. Based on physical characterizations and density functional theory calculations, the greatly improved specific capacity and cycling stability of the AG anode for sodium-ion storage can be attributed to the enlarged interlayer space, increased specific surface area, and introduced defects caused by ball-milling treatment, which provide vast active sites for reversible sodium-ion storage based on a adsorption/desorption mechanism, thus leading to great improvement in the specific capacity of the AG electrode. These results can provide a meaningful reference for the application of modified graphite for high-performance sodium storage.

14.
Macromol Rapid Commun ; 44(17): e2300182, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37294660

ABSTRACT

Flexible self-adhesive hydrogel sensors are attracting considerable concerns in recent years. However, creating a self-adhesive hydrogel sensor with excellent mechanical properties remains to be challenging. Herein, a double-sided self-adhesive hydrogel capable of strain sensor with high strength is demonstrated by penetration strategy. The middle poly(acrylic acid)-polyacrylamide/Fe3+ (PAA-PAM/Fe3+ ) tough layer endows the double-sided self-adhesive hydrogel with high mechanical properties, while the bilateral poly[2-(methacryloyloxy) ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide-polyacrylamide (PSBMA-PAM) adhesive layers are used to ensure excellent adhesiveness on diverse substrates. The tough layer of the double-sided self-adhesive hydrogel sensor shows a strong interface bonding force against the adhesive layer. The double-sided self-adhesive hydrogel sensor enables excellent adhesiveness on diverse substrates. More importantly, it can accurately detect different strains and human motions as a self-adhesive hydrogel strain sensor. This work manifests a new route of structural design to develop a self-adhesive hydrogel sensor with excellent mechanical properties that is suitable for a wide range of applications.


Subject(s)
Adhesives , Wearable Electronic Devices , Humans , Adhesives/chemistry , Resin Cements , Hydrogels/chemistry , Motion , Electric Conductivity
15.
J Nanobiotechnology ; 21(1): 118, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37005641

ABSTRACT

Glyco-quantum dots (glyco-QDs) have attracted significant interest in bioimaging applications, notably in cancer imaging, because they effectively combine the glycocluster effect with the exceptional optical properties of QDs. The key challenge now lies in how to eliminate the high heavy metal toxicity originating from traditional toxic Cd-based QDs for in vivo bioimaging. Herein, we report an eco-friendly pathway to prepare nontoxic Cd-free glyco-QDs in water by the "direct" reaction of thiol-ending monosaccharides with metal salts precursors. The formation of glyco-CuInS2 QDs could be explained by a nucleation-growth mechanism following the LaMer model. As-prepared four glyco-CuInS2 QDs were water-soluble, monodispersed, spherical in shape and exhibited size range of 3.0-4.0 nm. They exhibited well-separated dual emission in the visible region (500-590 nm) and near-infrared range (~ 827 nm), which may be attributable to visible excitonic emission and near-infrared surface defect emission. Meanwhile, the cell imaging displayed the reversibly distinct dual-color (green and red) fluorescence in tumor cells (HeLa, A549, MKN-45) and excellent membrane-targeting properties of glyco-CuInS2 QDs based on their good biorecognition ability. Importantly, these QDs succeed in penetrating uniformly into the interior (the necrotic zone) of 3D multicellular tumor spheroids (MCTS) due to their high negative charge (zeta potential values ranging from - 23.9 to - 30.1 mV), which overcame the problem of poor penetration depth of existing QDs in in vitro spheroid models. So, confocal analysis confirmed their excellent ability to penetrate and label tumors. Thus, the successful application in in vivo bioimaging of these glyco-QDs verified that this design strategy is an effective, low cost and simple procedure for developing green nanoparticles as cheap and promising fluorescent bioprobes.


Subject(s)
Nanoparticles , Quantum Dots , Humans , Diagnostic Imaging , HeLa Cells , Water
16.
Int J Biol Macromol ; 242(Pt 1): 124645, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37119886

ABSTRACT

The main purpose of this paper is to synthesize a new kind of green and environmental protection emulsion, which can be used as water erosion resistant materials. Here, a non-toxic polymer was prepared by grafting acrylic acid (AA) and methyl methacrylate (MMA) onto the long chains of tara gum (TG) to synthesize a copolymer emulsion (TG-g-P (AA-co-MMA)). The structure, thermal stability, morphology and wettability of the polymer were characterized by conventional methods, and the effects of key synthesis conditions on the performance of the emulsion (viscosity) were optimized. The erosion resistance and compressive strength of polymer-treated loess and laterite soils were evaluated under laboratory conditions. The results showed that the successful grafting of AA and MMA monomers onto TG improved its thermal stability and viscosity. In soil performance tests with low amounts of polymer additive, a 0.3 wt% application of TG-g-P (AA-co-MMA) to loess could resist continuous precipitation for >30 h with an erosion rate of 2.0 %. The compressive strength of the laterite treated with 0.4 % TG-g-P (AA-co-MMA) was 3.7 MPa, which was about three times that of the untreated soil. The results from this study suggest that TG-g-P (AA-co-MMA) emulsions have good potential for soil remediation applications.


Subject(s)
Polymers , Water , Methylmethacrylate , Emulsions , Methacrylates/chemistry
17.
ACS Biomater Sci Eng ; 9(5): 2683-2693, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37083337

ABSTRACT

Noninterventional embolization does not require the use of a catheter, and the treatment of solid tumors in combination with thermal ablation can avoid some of the risks of the surgical procedure. Therefore, we developed an efficient tumor microenvironment-gelled nanocomposites with poly [(l-glutamic acid-ran-l-tyrosine)-b-l-serine-b-l-cysteine] (PGTSCs) coated-nanoparticles (Fe3O4&Au@PGTSCs), from which the prepared PGTSCs were given possession of pH response to an acidic tumor microenvironment. Fe3O4&Au@PGTSC in noninterventional embolization treatment not only achieved the smart targeted medicine delivery but also meshed with noninvasive multimodal thermal ablation therapy and multimodal imaging of solid tumors via intravenous injection. It was worth noting that the results of animal experiments in vivo demonstrated that Fe3O4&Au@PGTSCs have specific tumor accumulation and embolization and thermal ablation effects; at 10 days postinjection, only scars were found at the tumor site. After 20 days, the tumors of model mice completely disappeared. This device is easier to treat solid tumors based on the slightly acidic tumor environment.


Subject(s)
Hyperthermia, Induced , Nanocomposites , Nanoparticles , Neoplasms , Mice , Animals , Amino Acids , Neoplasms/therapy , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Hyperthermia, Induced/methods , Nanocomposites/therapeutic use , Tumor Microenvironment
18.
Chemistry ; 29(34): e202300506, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-36988079

ABSTRACT

With the increasing demand for renewable energy, alkali metal-ion (lithium/sodium/potassium-ion) batteries play more and more important roles in the field of static storage and electrical vehicle industry. Novel anode materials with high reversible capacity, safety and long-term cycling stability are desiderated to meet the ever-growing demand for alkali metal-ion batteries with high electrochemical performance. Antimony oxides (Sbx Oy ) show electrochemical reaction activity with all of lithium, sodium and potassium, and are expected to be promising anode materials for alkali metal-ion storage due to their high theoretical capacities, appropriate operating potential and excellent safety properties. This review is devoted to overview the research progress on reaction mechanism and improvements in electrochemical performance of antimony oxides for alkali metal-ion storage, and look forward to their further prospects.

19.
Gels ; 9(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36975698

ABSTRACT

The pollution and scarcity of freshwater resources are global problems that have a significant influence on human life. It is very important to remove harmful substances in the water to realize the recycling of water resources. Hydrogels have recently attracted attention due to their special three-dimensional network structure, large surface area, and pores, which show great potential for the removal of pollutants in water. In their preparation, natural polymers are one of the preferred materials because of their wide availability, low cost, and easy thermal degradation. However, when it is directly used for adsorption, its performance is unsatisfactory, so it usually needs to be modified in the preparation process. This paper reviews the modification and adsorption properties of polysaccharide-based natural polymer hydrogels, such as cellulose, chitosan, starch, and sodium alginate, and discusses the effects of their types and structures on performance and recent technological advances.

20.
ACS Appl Mater Interfaces ; 15(3): 4569-4579, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36642890

ABSTRACT

Highly fluorescent covalent organic frameworks (COFs) are rarely obtained because of the π-π stacked layers with aggregation-caused quenching behavior. Unarguably, highly fluorescent COFs with tunable emission colors are even more rarely achieved. Herein, a general strategy to modify the classical COF material (named COF-1) by different fluorescent molecules via N → B interaction was developed. In this method, the boron-containing COF-1 acted as a porous and crystalline matrix as well as a reaction partner of Lewis acid; after interacting with fluorescent molecules with the anchoring group of pyridine (Lewis base), COF-1 takes a gorgeous transfiguration from a non-emissive powder into a highly fluorescent COF material with tunable emission colors. This disclosed method endowed the typical COFs with new emissive life and is speculated with the general research concept for all boron-containing COFs. Benefiting from the prominent fluorescent emission in the aggregation state, sensitive probes toward amines are achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...