Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
J Transl Med ; 22(1): 193, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388430

ABSTRACT

Aberrant upregulation of the ubiquitin-specific protease 14 (USP14) has been found in some malignant tumors, including oral squamous cell carcinoma (OSCC). In this study, we further demonstrated that aberrantly overexpressed USP14 was also closely related to adverse clinicopathological features and poor prognosis in patients with OSCC, so we hypothesized that USP14 might act as a tumor-promoting factor during the progression of OSCC. Notably, we originally proved that USP14 is a deubiquitinating enzyme for phosphofructokinase-1 liver type (PFKL), a key rate-limiting enzyme involved in the glycolytic pathway. USP14 interacts with PFKL and enhances its stability through deubiquitination in OSCC cells, which in turn enhances PFKL-mediated glycolytic metabolism and ultimately promote cellular proliferation, migration, and tumorigenesis. In this work, we have also demonstrated for the first time that USP14 is a critical regulator of glycolysis in OSCC and verified a novel mechanism whereby it is involved in tumor metastasis and growth. Collectively, our findings provide novel insights into the tumor-promoting role of USP14 and establish mechanistic foundations for USP14-targeting therapies.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/genetics , Phosphofructokinase-1 , Liver , Glycolysis , Cell Proliferation , Ubiquitin-Specific Proteases , Cell Line, Tumor , Ubiquitin Thiolesterase
3.
Cell Signal ; 110: 110837, 2023 10.
Article in English | MEDLINE | ID: mdl-37544636

ABSTRACT

BACKGROUND: Despite some progress having been made regarding the treatment of T-cell acute lymphoblastic leukemia (T-ALL), the prognosis of T-ALL, particularly adult T-ALL, is still poor. Identifying novel, effective anti-T-ALL drugs is of great significance. Anlotinib, an oral tyrosine kinase inhibitor currently utilized in the treatment of lung cancer, exhibited a promising anti-T-ALL effect. A comprehensive study should therefore be conducted to explore both the in vitro as well as in vivo mechanisms of the anti-T-ALL effects of anlotinib. METHODS: CCK8 assays and flow cytometry were employed to investigate the viability, cell cycle distribution, and apoptosis of T-ALL cell lines when treated with anlotinib. T-ALL xenograft mouse models were established to examine the in vivo antileukemic effects of anlotinib. Cellular and molecular analysis of T-ALL were conducted to define the underlying mechanisms. RESULTS: In vitro, anlotinib significantly inhibited the viability, induced G2/M phase arrest and apoptosis in T-ALL cell lines in a concentration-dependent pattern. In vivo, anlotinib also demonstrated a strong anti-tumor effect at doses that are well-tolerated. Interestingly, anlotinib could decrease the protein levels of the intracellular domains of NOTCH1 (ICN1) and c-Myc, two important targets for T-ALL. Mechanistically, anlotinib-induced c-Myc reduction was associated with proteasome-mediated degradation, while the ICN1 reduction was not due to protein degradation or transcriptional repression. CONCLUSIONS: The present study showed that anlotinib may be a promising anti-T-ALL candidate drug, and simultaneous reduction of the protein levels of both ICN1 and c-Myc may contribute to the anti-T-ALL efficacy of anlotinib.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Quinolines , Humans , Mice , Animals , Cell Line, Tumor , Signal Transduction , Indoles/pharmacology , Indoles/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Quinolines/pharmacology , Quinolines/therapeutic use , Cell Proliferation , Apoptosis
4.
Med Eng Phys ; 119: 104031, 2023 09.
Article in English | MEDLINE | ID: mdl-37634913

ABSTRACT

For robot-assisted pelvic fracture reduction, at least two bone needles need to be inserted into the ilium of the affected pelvis, and the robot clamping device is connected with the bone needles. The biomechanical properties of the pelvic musculoskeletal tissues are different with the different Spatial Position and Orientation (SPO) of the bone needles. In order to determine the optimal SPO of bone needle pairs, the constraints between the bone needles and the pelvis are analyzed, and the SPO vectors of 150 groups bone needles are obtained by the KNN-hierarchical clustering method; a batch modeling method of bone needles with different SPO is proposed. 150 finite element models of damaged pelvic musculoskeletal tissue with different SPO of bone needles are established and simulated. The stress and strain distribution homogenization of musculoskeletal tissue with bone needles as evaluation index, the simulation results of 150 models are evaluated. Results show that, the anterior superior iliac spine and the anterior inferior iliac spine are suitable regions to place bone needles in the pelvis, and the optimal distribution of the needle combination is found in this region. The overall stress and strain distribution of the damaged pelvic musculoskeletal tissue under the large reduction force is the best.


Subject(s)
Fractures, Bone , Traction , Humans , Needles , Pelvis , Fracture Fixation
5.
China Pharmacy ; (12): 1899-1903, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979944

ABSTRACT

OBJECTIVE To explore the construction of mind map by clinical pharmacists for the consultation of pulmonary nocardiosis and its application in clinical practice, and to provide reference for promoting the correct selection of nocardiosis treatment drugs in clinical practice and ensuring drug safety and efficacy. METHODS A total of 7 patients with Nocardia pulmonary infection from January 2017 to April 2022 in our hospital were collected. Based on evidence-based medicine, a consultation mind map (mainly including understanding the medical history, identifying infectious bacteria, identifying risk factors, developing treatment plans, and conducting evaluations) was constructed to address the difficulties of large differences in drug sensitivity among different strains of Nocardia and numerous adverse reactions of Compound sulfamethoxazole as a first-line drug. The treatment plan was developed for 7 patients with pulmonary nocardiosis, and whole-process pharmaceutical care was provided. RESULTS Combined with the mind map, different antibiotic combination regimens were given according to the drug sensitivity results of Nocardia, the different species of Nocardia, and the patient’s allergy history. Among them, 4 cases were treated with imipenem cilastatin, the patients receiving Compound sulfamethoxazole and linezolid for a long time were given full pharmaceutical care, and the adverse drug reactions were timely treated.CONCLUSIONS Clinical pharmacists apply the consultation mind map of pulmonary nocardiosis to the treatment of inpatients, take advantage of pharmacy, participate in clinical drug therapy, and really play a role in the clinical treatment team so as to promote rational drug use.

6.
Chinese Journal of Stomatology ; (12): 109-117, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970763

ABSTRACT

Homeostasis is a dynamic balance process of self-regulating. Biological systems remain stable through adapting to changing external conditions to maintain normal life activities. Homeostatic medicine is the science of studying homeostasis of human molecules, cells, organs and the whole body. It is a comprehensive discipline based on maintaining homeostasis to keep human health and assist for diseases prevention and diagnoses. Homeostatic medicine focuses on the whole body and on the role of homeostasis in health and disease, which is expected to provide new ideas and strategies for maintaining health as well as diagnosing and treating diseases. Nitric oxide (NO) plays an important role in the control of multisystem homeostasis. Nitrate is an important substance in regulating NO homeostasis through the nitrate-nitrite-NO pathway. Sialin, nitrate transporter which is located in the cell membrane and cytoplasm, mediates multiple cellular biological functions. The nitrate-nitrite-NO pathway and sialin-mediated biological functions play an important role in the regulation of body homeostasis.


Subject(s)
Humans , Nitrates/metabolism , Nitrites/metabolism , Homeostasis , Nitric Oxide
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970467

ABSTRACT

Atherosclerosis(AS) is the common pathological basis of many ischemic cardiovascular diseases, and its formation process involves various aspects such as vascular endothelial injury and platelet activation. Vascular endothelial injury is the initiating factor of AS plaque. Monocytes are recruited to differentiate into macrophages at the damaged endothelial cells, which absorb oxidized low-density lipoprotein(ox-LDL) and slowly transform into foam cells. Smooth muscle cells(SMCs) proliferate and migrate continuously. As the only cell producing interstitial collagen fibers in the fibrous cap, SMCs largely determine whether the plaque ruptured or not. The amplifying inflammatory response during the formation of AS recruits platelets to adhere to the damaged area of vascular endothelium and stimulates excessive platelet aggregation. Autophagy activity is associated with vascular lesions and abnormal platelet activation, and excessive autophagy is considered to be a negative factor for plaque stability. Therefore, precise regulation of different types of vascular autophagy and platelet autophagy to treat AS may provide a new therapeutic perspective for the prevention and treatment of atherosclerotic ischemic cardiovascular disease. Currently, treatment strategies for AS still focus on lowering lipid levels with high-intensity statins, which often cause significant side effects. Therefore, the development of safer and more effective drugs and treatment modes is the focus of current research. Traditional Chinese medicine and natural compounds have the potential to treat AS by targeted autophagy, and have been playing an increasingly important role in the prevention and treatment of cardiovascular diseases in China. This paper summarizes the experimental studies on different vascular cell types and platelet autophagy in AS, and sums up the published research results on targeted autophagy of traditional Chinese medicine and natural plant compounds to regulate AS, providing new ideas for further research.


Subject(s)
Humans , Endothelial Cells/metabolism , Cardiovascular Diseases , Medicine, Chinese Traditional , Atherosclerosis/prevention & control , Lipoproteins, LDL/metabolism , Endothelium, Vascular , Plaque, Atherosclerotic , Autophagy
8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-982225

ABSTRACT

At present, the passive simulated lung including the splint lung is an important device for hospitals and manufacturers in testing the functions of a respirator. However, the human respiration simulated by this passive simulated lung is quite different from the actual respiration. And it is not able to simulate the spontaneous breathing. Therefore, including" the device simulating respiratory muscle work "," the simulated thorax" and" the simulated airway", an active mechanical lung to simulate human pulmonary ventilation was designed:3D printed human respiratory tract was developed and connected the left and right air bags at the end of the respiratory tract to simulate the left and right lungs of the human body. By controlling a motor running to drive the crank and rod to move a piston back and forth, and to deliver an alternating pressure in the simulated pleural, and so as to generate an active respiratory airflow in airway. The experimental respiratory airflow and pressure from the active mechanical lung developed in this study are consistent with the target airflow and pressure which collected from the normal adult. The developed active mechanical lung function will be conducive to improve the quality of the respirator.


Subject(s)
Adult , Humans , Lung/physiology , Respiration , Pulmonary Ventilation , Respiration, Artificial , Ventilators, Mechanical
9.
Front Nutr ; 9: 915776, 2022.
Article in English | MEDLINE | ID: mdl-35983487

ABSTRACT

Laoxianghuang, fermented from Citrus medica L. var. Sarcodactylis Swingle of the Rutaceae family, is a medicinal food. The volatiles of Laoxianghuang fermented in different years were obtained by solid-phase microextraction combined with gas chromatography-mass spectrometry (SPME-GC-MS). Meanwhile, the evolution of its component-flavor function during the fermentation process was explored in depth by combining chemometrics and performance analyses. To extract the volatile compounds from Laoxianghuang, the fiber coating, extraction time, and desorption temperature were optimized in terms of the number and area of peaks. A polydimethylsiloxane/divinylbenzene (PDMS/DVB) with a thickness of 65 µm fiber, extraction time of 30 min, and desorption temperature of 200 °C were shown to be the optimal conditions. There were 42, 44, 52, 53, 53, and 52 volatiles identified in the 3rd, 5th, 8th, 10th, 15th, and 20th years of fermentation of Laoxianghuang, respectively. The relative contents were 97.87%, 98.50%, 98.77%, 98.85%, 99.08%, and 98.36%, respectively. Terpenes (mainly limonene, γ-terpinene and cymene) displayed the highest relative content and were positively correlated with the year of fermentation, followed by alcohols (mainly α-terpineol, ß-terpinenol, and γ-terpineol), ketones (mainly cyclohexanone, D(+)-carvone and ß-ionone), aldehydes (2-furaldehyde, 5-methylfurfural, and 1-nonanal), phenols (thymol, chlorothymol, and eugenol), esters (bornyl formate, citronellyl acetate, and neryl acetate), and ethers (n-octyl ether and anethole). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed a closer relationship between the composition of Laoxianghuang with similar fermentation years of the same gradient (3rd-5th, 8th-10th, and 15th-20th). Partial least squares discriminant analysis (PLS-DA) VIP scores and PCA-biplot showed that α-terpineol, γ-terpinene, cymene, and limonene were the differential candidate biomarkers. Flavor analysis revealed that Laoxianghuang exhibited wood odor from the 3rd to the 10th year of fermentation, while herb odor appeared in the 15th and the 20th year. This study analyzed the changing pattern of the flavor and function of Laoxianghuang through the evolution of the composition, which provided a theoretical basis for further research on subsequent fermentation.

10.
Exp Hematol Oncol ; 11(1): 42, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35836282

ABSTRACT

Pyruvate kinase M2 (PKM2) plays an important role in the metabolism and proliferation of leukemia cells. Here, we show that deubiquitinase JOSD2, a novel tumor suppressor, blocks PKM2 nuclear localization by reducing its K433 acetylation in acute myeloid leukemia (AML). Firstly, we show that JOSD2 is significantly down-regulated in primary AML cells. Reconstitute of JOSD2 in AML cells significantly inhibit cell viability and induce cell apoptosis. Next, PKM2 is identified as a novel interaction protein of JOSD2 by mass spectrometry, co- immunoprecipitation and co-immunofluorescence in HL60 cells. However, JOSD2 does not affect PKM2 protein stability. We then found out that JOSD2 inhibits nuclear localization of PKM2 by reducing its K433 acetylation modification, accompanied by decreased downstream gene expression through non-glycolytic functions. Finally, JOSD2 decreases AML progression in vivo. Taken together, we propose that JOSD2 blocks PKM2 nuclear localization and reduces AML progression.

11.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1133-1139, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35866602

ABSTRACT

The coronavirus papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for viral polypeptide cleavage and the deISGylation of interferon-stimulated gene 15 (ISG15), which enable it to participate in virus replication and host innate immune pathways. Therefore, PLpro is considered an attractive antiviral drug target. Here, we show that parthenolide, a germacrane sesquiterpene lactone, has SARS-CoV-2 PLpro inhibitory activity. Parthenolide covalently binds to Cys-191 or Cys-194 of the PLpro protein, but not the Cys-111 at the PLpro catalytic site. Mutation of Cys-191 or Cys-194 reduces the activity of PLpro. Molecular docking studies show that parthenolide may also form hydrogen bonds with Lys-192, Thr-193, and Gln-231. Furthermore, parthenolide inhibits the deISGylation but not the deubiquitinating activity of PLpro in vitro. These results reveal that parthenolide inhibits PLpro activity by allosteric regulation.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Papain-Like Proteases , Antiviral Agents/pharmacology , Humans , Interferons , Lactones , Molecular Docking Simulation , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2 , Sesquiterpenes , Sesquiterpenes, Germacrane , Ubiquitin/metabolism
12.
Int J Biol Sci ; 18(6): 2515-2526, 2022.
Article in English | MEDLINE | ID: mdl-35414773

ABSTRACT

Rationale: In multiple myeloma (MM), the activities of non-homologous end joining (NHEJ) and homologous recombination repair (HR) are increased compared with healthy controls. Whether and how IKZF1 as an enhancer of MM participates in the DNA repair pathway of tumor cells remains elusive. Methods: We used an endonuclease AsiSI-based system and quantitative chromatin immunoprecipitation assay (qChIP) analysis to test whether IKZF1 is involved in DNA repair. Immunopurification and mass spectrometric (MS) analysis were performed in MM1.S cells to elucidate the molecular mechanism that IKZF1 promotes DNA damage repair. The combination effect of lenalidomide or USP7 inhibitor with PARP inhibitor on cell proliferation was evaluated using MM cells in vitro and in vivo. Results: We demonstrate that IKZF1 specifically promotes homologous recombination DNA damage repair in MM cells, which is regulated by its interaction with CtIP and USP7. In this process, USP7 could regulate the stability of IKZF1 through its deubiquitinating activity. The N-terminal zinc finger domains of IKZF1 and the ubiquitin-like domain of USP7 are necessary for their interaction. Furthermore, targeted inhibition IKZF1 or USP7 could sensitize MM cells to PARP inhibitor treatment in vitro and in vivo. Conclusions: Our findings identify USP7 as a deubiquitinating enzyme for IKZF1 and uncover a new function of IKZF1 in DNA damage repair. In translational perspective, the combination inhibition of IKZF1 or USP7 with PARP inhibitor deserves further evaluation in clinical trials for the treatment of MM.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Antineoplastic Agents/pharmacology , DNA Repair/genetics , Endodeoxyribonucleases , Humans , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Recombinational DNA Repair , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/metabolism
13.
Sci China Life Sci ; 65(8): 1624-1635, 2022 08.
Article in English | MEDLINE | ID: mdl-35235149

ABSTRACT

Deubiquitinates (DUBs) alter the stabilities, localizations or activities of substrates by removing their ubiquitin conjugates, which are closely related to the development of inflammatory response. Here, we show that ubiquitin-specific protease 47 (USP47) prevents inflammation development in inflammatory bowel disease (IBD). Compared with wild-type mice, Usp47 knockout mice are more susceptible to dextran sodium sulfate (DSS)-induced acute and chronic colitis with higher inflammatory cytokines expression and severe intestinal tissue damage. Chimeric mouse experiments suggest that non-hematopoietic cells mainly contribute to the phenotype. And, DSS-induced colitis of the Usp47 knockout mice depends on commensal bacteria. Mechanistically, down-regulation of USP47 aggravates the activation of NF-κB signaling pathway by increasing the K63-linked poly-ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6) in intestinal epithelial cells. Furthermore, the expression of USP47, negatively correlated with the degree of inflammation, is lower at colonic inflammatory lesions than that non-inflammatory sites from the intestine from ulcerative colitis (UC) and Crohn's disease (CD) patients. These data, taken together, indicate that USP47 regulates intestinal inflammation through de-ubiquitination of K63-linked poly-ubiquitination TRAF6 in intestinal epithelial cells.


Subject(s)
Colitis , TNF Receptor-Associated Factor 6 , Ubiquitin-Specific Proteases , Animals , Colitis/chemically induced , Colitis/pathology , Epithelial Cells/metabolism , Inflammation/metabolism , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
14.
Chem Biol Interact ; 351: 109770, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34861246

ABSTRACT

INTRODUCTION: Despite the rapid progress in the diagnosis and treatment, the prognosis of some types of non-Hodgkin's lymphoma (NHL), especially those with double-hit or double-expressor genotypes, remains poor. Novel targets and compounds are needed to improve the prognosis of NHL. METHODS: We investigated the effect of ZCL-082, a novel boron-containing compound with anti-proliferating activity against ovarian cancer cells, on NHL cells and human peripheral blood mononuclear cells by CCK-8 assay, Annexin V/PI double staining assay, RH123/PI double staining, Western blot, and immunohistochemistry. NF-κB pathway activity was analyzed using luciferase reporter gene assay and RT-PCR. The location of p65 was detected by immunofluorescence and nuclear/cytoplasmic fractionation assay. Immunoprecipitation and chromatin immunoprecipitation assays were used to detect the binding between p65 and p300. CETSA and molecular docking assay were carried out to test the interaction between ZCL-082 and p90 ribosomal S6 kinase 1 (RSK1). Kinase reaction was conducted to examine the inhibition of RSK1 kinase activity by ZCL-082. RESULTS: We found that ZCL-082 can induce the apoptosis of various NHL cell lines in vitro and in vivo. ZCL-082 significantly inhibits TNFα- or LPS-induced NF-κB activation without disturbing TNFα-induced IκBα degradation or the nuclear translocation and DNA-binding ability of p65. However, ZCL-082 markedly suppresses the phosphorylation of p65 on Ser536 and the interaction between p65 and p300. The overexpression of the phosphomimetic mutant of p65 at Ser536 partially abrogates ZCL-082-induced cell death. We further found that ZCL-082 directly binds to and inhibits the activity of RSK1. RSK1 can phosphorylate RelA/p65 on Ser536 and its overexpression is associated with the poor prognosis of lymphoma. The overexpression of RSK1 partially rescues ZCL-082-induced cell death. Molecular docking studies show that ZCL-082 fits well with the N-terminal kinase domain of RSK1. Furthermore, the combination of ZCL-082 and BCL-2 inhibitor ABT-199 has a synergistic apoptosis-inducing effect against double-hit lymphoma cell line OCI-Ly10. DISCUSSION: We found that ZCL-082 is a highly promising anti-lymphoma compound that targets RSK1 and interferes with the RSK1/NF-κB signaling pathway. The combination of ZCL-082 with BCL-2 inhibitor may represent a novel strategy to improve the outcome of double-hit or double-expressor lymphoma.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Boron Compounds/therapeutic use , Lymphoma, Non-Hodgkin/drug therapy , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Boron Compounds/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Transcription Factor RelA/chemistry , Transcription Factor RelA/metabolism
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-928676

ABSTRACT

OBJECTIVE@#To analyze the clinical characteristics and risk factors of invasive fungal infection (IFI) occurenced in patients with acute leukemia (AL) during treatment in tropical regions.@*METHODS@#The clinical data of 68 AL patients admitted to the Hainan Hospital of PLA General Hospital from April 2012 to April 2019 was retrospectively analyzed. Logistic regression analysis was used to analyze the factors affecting the occurrence of IFI in AL patients.@*RESULTS@#Among the 68 patients, 44 were acute myeloid leukemia, 24 were acute lymphoblastic leukemia, 39 were male, 29 were female and the median age was 41(13-75) years old. The 68 patients received 242 times of chemotherapy or hematopoietic stem cell transplantation(HSCT), including 73 times of initial chemotherapy or inducting chemotherapy after recurrence, 14 times of HSCT, 155 times of consolidating chemotherapy. Patients received 152 times of anti-fungal prophylaxis, including 77 times of primary anti-fungal prophylaxis and 75 times of secondary anti-fungal prophylaxis. Finally, the incidence of IFI was 31 times, including 24 times of probable diagnosis, 7 times of proven diagnosis, and the total incidence of IFI was 12.8%(31/242), the incidence of IFI in inducting chemotherapy was 24.66%(18/73), the incidence of IFI in HSCT patients was 28.57% (4/14), the incidence of IFI in consolidating chemotherapy was 5.80% (9/155). Multivariate analysis showed that inducting chemotherapy or HSCT, the time of agranulocytosis ≥7 days, risk stratification of high risk were the independent risk factors for IFI in AL patients during treatment in tropical regions.@*CONCLUSION@#The incidence of IFI in patients with AL in the tropics regions is significantly higher than that in other regions at homeland and abroad. Anti-fungal prophylaxis should be given to the patients with AL who have the high risk factors of inducting chemotherapy or HSCT, time of agranulocytosis ≥7 days and risk stratification of high risk.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Antifungal Agents/therapeutic use , Hematopoietic Stem Cell Transplantation , Invasive Fungal Infections/epidemiology , Leukemia, Myeloid, Acute/drug therapy , Retrospective Studies , Risk Factors
16.
Biomark Res ; 9(1): 66, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34454635

ABSTRACT

Deubiquitinases (DUBs) are enzymes that control the stability, interactions or localization of most cellular proteins by removing their ubiquitin modification. In recent years, some DUBs, such as USP7, USP9X and USP10, have been identified as promising therapeutic targets in hematological malignancies. Importantly, some potent inhibitors targeting the oncogenic DUBs have been developed, showing promising inhibitory efficacy in preclinical models, and some have even undergone clinical trials. Different DUBs perform distinct function in diverse hematological malignancies, such as oncogenic, tumor suppressor or context-dependent effects. Therefore, exploring the biological roles of DUBs and their downstream effectors will provide new insights and therapeutic targets for the occurrence and development of hematological malignancies. We summarize the DUBs involved in different categories of hematological malignancies including leukemia, multiple myeloma and lymphoma. We also present the recent development of DUB inhibitors and their applications in hematological malignancies. Together, we demonstrate DUBs as potential therapeutic drug targets in hematological malignancies.

17.
Cell Death Dis ; 12(4): 396, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854043

ABSTRACT

Despite the significant advances in the treatment of multiple myeloma (MM), this disease is still considered incurable because of relapse and chemotherapy resistance, underscoring the need to seek novel therapies with different mechanisms. Anlotinib, a novel multi-targeted tyrosine kinase inhibitor (TKI), has exhibited encouraging antitumor activity in several preclinical and clinical trials, but its effect on MM has not been studied yet. In this study, we found that anlotinib exhibits encouraging cytotoxicity in MM cells, overcomes the protective effect of the bone marrow microenvironment and suppresses tumor growth in the MM mouse xenograft model. We further examined the underlying molecular mechanism and found that anlotinib provokes cell cycle arrest, induces apoptosis and inhibits multiple signaling pathways. Importantly, we identify c-Myc as a novel direct target of anlotinib. The enhanced ubiquitin proteasomal degradation of c-Myc contributes to the cell apoptosis induced by anlotinib. In addition, anlotinib also displays strong cytotoxicity against bortezomib-resistant MM cells. Our study demonstrates the extraordinary anti-MM effect of anlotinib both in vitro and in vivo, which provides solid evidence and a promising rationale for future clinical application of anlotinib in the treatment of human MM.


Subject(s)
Bortezomib/pharmacology , Genes, myb/drug effects , Indoles/pharmacology , Multiple Myeloma/drug therapy , Quinolines/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Neoplasm Recurrence, Local/drug therapy , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Tumor Microenvironment/drug effects
18.
Preprint in English | medRxiv | ID: ppmedrxiv-21253850

ABSTRACT

BackgroundThe significant morbidity and mortality resulted from the infection of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) call for urgent development of effective and safe vaccines. We report the immunogenicity and safety of a SARS-CoV-2 inactivated vaccine, KCONVAC, in healthy adults. MethodsTwo phase 1 and phase 2 randomized, double-blind, and placebo-controlled trials of KCONVAC were conducted in Chinese healthy adults aged 18 through 59 years. The phase 1 trial was conducted in a manner of dosage escalation. The first 30 participants were randomized in a ratio of 4:1 to receive two doses of either KCONVAC at 5 g per dose or placebo on Day 0 and Day 14, and the second 30 participants were randomized to receive either KCONVAC at 10 g per dose or placebo following the same procedures. The participants in the phase 2 trial were randomized in a ratio of 2:2:1 to receive either KCONVAC at 5 g or 10 g per dose, or placebo on Day 0 and Day 14, or Day 0 and Day 28. In the phase 1 trial, the primary safety endpoint was the proportion of participants experiencing adverse reactions/events within 28 days following each vaccination. Antibody response and cellular response were assayed in the phase 1 trial. In the phase 2 trial, the primary immunogenicity endpoint was the seroconversion and titre of neutralization antibody, and the seroconversion of receptor binding domain (RBD)-IgG 28 days after the second dose. FindingsIn the phase 1 trial, 60 participants were enrolled and received at least one dose of 5-g vaccine (N=24), 10-g vaccine (N=24), or placebo (N=12). In the phase 2 trial, 500 participants were enrolled and received at least one dose of 5-g vaccine (N=100 for 0/14 or 0/28 regimens), 10-g vaccine (N=100 for each regimen), or placebo (N=50 for each regimen). In the phase 1 trial, 13 (54%), 11(46%), and 7 (58%) participants reported at least one adverse event (AE), of whom 10 (42%), 6 (25%), and 6 (50%) participants reported at least one vaccination-related AE after receiving 5-g vaccine, 10-g vaccine, or placebo, respectively. In the phase 2 trial, 16 (16%), 19 (19%), and 9 (18%) participants reported at least one AE, of whom 13 (13%), 17 (17%), and 6 (12%) participants reported at least one vaccination-related AE after receiving 5-g vaccine, 10-g vaccine, or placebo at the regimen of Day 0/14, respectively. Similar results were observed in the three treatment groups of Day 0/28 regimen. All the AEs were grade 1 or 2 in intensity. No AE of grade 3 or more was reported. One SAE (foot fracture) was reported in the phase 1 trial. KCONVAC induced significant antibody response. 87{middle dot}5% (21/24) to 100% (24/24) of participants in the phase 1 trial and 83{middle dot}0% (83/100) to 100% (99/99) of participants in the phase 2 trial seroconverted for neutralising antibody to live virus, neutralising antibody to pseudovirus, and RBD-IgG after receiving two doses. Across the treatment groups in the two trials, the geometric mean titres (GMTs) of neutralising antibody to live virus ranged from 29{middle dot}3 to 49{middle dot}1 at Day 0/14 regimen and from 100{middle dot}2 to 131{middle dot}7 at Day 0/28 regimen, neutralising antibody to pseudovirus ranged from 69{middle dot}4 to 118{middle dot}7 at Day 0/14 regimen and from 153{middle dot}6 to 276{middle dot}6 at Day 0/28 regimen, and RBD-IgG ranged from 605{middle dot}3 to 1169{middle dot}8 at Day 0/14 regimen and from 1496{middle dot}8 to 2485{middle dot}5 at Day 0/28 regimen. RBD-IgG subtyping assay showed that a significant part of RBD-IgG was IgG1. The vaccine induced obvious T-cell response with 56{middle dot}5% (13/23) and 62{middle dot}5% (15/24) of participants in 5-g and 10-g vaccine groups showed positive interferon-{gamma} enzyme-linked immunospot responses 14 days after the second dose in the phase 1 trial, respectively. InterpretationKCONVAC is well tolerated and able to induce robust antibody response and cellular response in adults aged 18 to 59 years, which warrants further evaluation with this vaccine in the upcoming phase 3 efficacy trial. FundingGuandong Emergency Program for Prevention and Control of COVID-19 (2020A1111340002) and Shenzhen Key Research Project for Prevention and Control of COVID-19.

19.
Sci China Life Sci ; 64(9): 1481-1490, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33439458

ABSTRACT

The stability of Ikaros family zinc finger protein 1 (Ikaros), a critical hematopoietic transcription factor, can be regulated by cereblon (CRBN) ubiquitin ligase stimulated by immunomodulatory drugs in multiple myeloma. However, other stabilization mechanisms of Ikaros have yet to be elucidated. In this study, we show that the pharmacologic inhibition or knockdown of Hsp90 downregulates Ikaros in acute myeloid leukemia (AML) cells. Proteasome inhibitor MG132 but not autophagy inhibitor chloroquine could suppress the Hsp90 inhibitor STA-9090-induced reduction of Ikaros, which is accompanied with the increased ubiquitination of Ikaros. Moreover, Ikaros interacts with E3 ubiquitin-ligase C terminal Hsc70 binding protein (CHIP), which mediates the STA-9090-induced ubiquitination of Ikaros. In addition, the knockdown of Ikaros effectively inhibits the proliferation of leukemia cells, but this phenomenon could be rescued by Ikaros overexpression. Collectively, our findings indicate that the interplay between HSP90 and CHIP regulates the stability of Ikaros in AML cells, which provides a novel strategy for AML treatment through targeting the HSP90/Ikaros/CHIP axis.


Subject(s)
Alcohol Oxidoreductases/metabolism , DNA-Binding Proteins/metabolism , HSC70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Ikaros Transcription Factor/metabolism , Leukemia, Myeloid, Acute/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , Down-Regulation , HEK293 Cells , Humans , Ubiquitination
20.
Nat Commun ; 12(1): 51, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397955

ABSTRACT

Identifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin-Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Protein Kinase Inhibitors/pharmacology , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Specific Proteases/metabolism , Animals , Cell Proliferation/drug effects , DNA Damage , DNA Repair/drug effects , Drug Resistance, Neoplasm/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Fusion Proteins, bcr-abl , Gene Expression Regulation, Leukemic/drug effects , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mice, Knockout , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects , Protein Stability/drug effects , Proteolysis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Thiophenes/pharmacology , Xenograft Model Antitumor Assays , Y-Box-Binding Protein 1/metabolism , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...