Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Res Pract Thromb Haemost ; 8(4): 102443, 2024 May.
Article in English | MEDLINE | ID: mdl-38993621

ABSTRACT

Background: Salvianolic acid B (SAB) is a major component of Salvia miltiorrhiza root (Danshen), widely used in East/Southeast Asia for centuries to treat cardiovascular diseases. Danshen depside salt, 85% of which is made up of SAB, is approved in China to treat chronic angina. Although clinical observations suggest that Danshen extracts inhibited arterial and venous thrombosis, the exact mechanism has not been adequately elucidated. Objective: To delineate the antithrombotic mechanisms of SAB. Methods: We applied platelet aggregation and coagulation assays, perfusion chambers, and intravital microscopy models. The inhibition kinetics and binding affinity of SAB to thrombin are measured by thrombin enzymatic assays, intrinsic fluorescence spectrophotometry, and isothermal titration calorimetry. We used molecular in silico docking models to predict the interactions of SAB with thrombin. Results: SAB dose-dependently inhibited platelet activation and aggregation induced by thrombin. SAB also reduced platelet aggregation induced by adenosine diphosphate and collagen. SAB attenuated blood coagulation by modifying fibrin network structures and significantly decreased thrombus formation in mouse cremaster arterioles and perfusion chambers. The direct SAB-thrombin interaction was confirmed by enzymatic assays, intrinsic fluorescence spectrophotometry, and isothermal titration calorimetry. Interestingly, SAB shares key structural similarities with the trisubstituted benzimidazole class of thrombin inhibitors, such as dabigatran. Molecular docking models predicted the binding of SAB to the thrombin active site. Conclusion: Our data established SAB as the first herb-derived direct thrombin catalytic site inhibitor, suppressing thrombosis through both thrombin-dependent and thrombin-independent pathways. Purified SAB may be a cost-effective agent for treating arterial and deep vein thrombosis.

2.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1347-1358, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886434

ABSTRACT

In the context of rapid urbanization, metropolitan areas are facing the risk of supply-demand mismatches among ecosystem services. Investigating the patterns, relationships, and driving factors of multiple supply-demand risks is of great significance to support the efficient management of regional ecological risks. We quantified the single/comprehensive supply-demand risk rates of six ecosystem services in Wuhan Metropolitan Area at the township scale in 2000, 2010, and 2020. By applying the self-organizing feature map network and optimal parameter geo-detector, we identified supply-demand risks bundles of ecosystem services and influencing factors of comprehensive risks. The results showed significant spatial variations in the supply-demand risks of typical ecosystem services from 2000 to 2020. The supply-demand risk associated with grain production, water yield, carbon sequestration, and green space recreation increased, while soil conservation and water purification risks decreased. The comprehensive ecosystem services supply-demand risk increased from 0.41 to 0.45, indicating a 'core area increase and periphery decrease' trend. Throughout the study period, the area exhibited bundles of comprehensive extremely high-risk bundles (B1), comprehensive high-risk bundles (B2), water purification high-risk bundles (B3), and grain production-soil conservation risk bundles (B4). The transition of risk types from B3 to B2 and from B2 to B1 suggested an increase in the combination and intensity of supply-demand risk. Vegetation cover, nighttime light index, and population density were the main driving factors for spatial variations in comprehensive supply-demand risk. Ecologi-cal risk assessment based on ecosystem services supply-demand bundles could provide an effective and reliable way to regulate multiple regional risk issues.


Subject(s)
Cities , Conservation of Natural Resources , Ecosystem , China , Risk Assessment , Ecology , Environmental Monitoring , Urbanization
3.
Bioorg Chem ; 149: 107487, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805910

ABSTRACT

The peel of Trichosanthes kirilowii Maxim, is considered one of the primary sources for Trichosanthis pericarpium in traditional Chinese medicine, exhibiting lipid-lowering properties. The impact on hyperlipidemia mice of the crude polysaccharide from the peel of T. Kirilowii (TRP) was investigated in this study. The findings revealed that TRP exhibited a significant improvement in hepatic lipid deposition. Moreover, it significantly decreased serum levels of TC, TG, and LDL-C, while concurrently increasing HDL-C. 16S rRNA amplicon sequencing technique revealed that TRP group exhibited an increased relative abundance of Actinobacteria, a down-regulated relative abundance of Ruminiclostridium, and an up-regulated relative abundance of Ileibacterium. Therefore, TRP might play a role in anti-hyperlipidemia through regulation of the intestinal milieu and enhancement of microbial equilibrium. Consequently, targeted fractionation of TRP resulted in the isolation of a homogeneous acidic polysaccharide termed TRP-1. The TRP-1 polysaccharide, with an average molecular weight of 1.00 × 104 Da, and was primarily composed of Rha, GlcA, GalA, Glc, Gal and Ara. TRP-1 possessed a backbone consisting of alternating connections between â†’ 6)-α-Galp-(1 â†’ 4)-α-Rhap-(1 â†’ 6)-α-Galp-(2 â†’ 6)-ß-Galp-(1 â†’ 6)-α-Galp-(2 â†’ 6)-ß-Galp-(1 â†’ units and branched chain containing â†’ 6)-α-Glcp-(1→, 2,4)-ß-Glcp-(1, and â†’ 4)-α-GlapA-(1→. Both TRP and TRP-1 exhibited significant disruption of cholesterol micelles, highlighting their potential as lipid-lowering agents that effectively inhibit cholesterol absorption pathways.


Subject(s)
Cholesterol , Gastrointestinal Microbiome , Hyperlipidemias , Polysaccharides , Trichosanthes , Animals , Gastrointestinal Microbiome/drug effects , Trichosanthes/chemistry , Mice , Hyperlipidemias/drug therapy , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Cholesterol/metabolism , Cholesterol/blood , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/isolation & purification , Male , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug
4.
Biochem Biophys Res Commun ; 712-713: 149946, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38643717

ABSTRACT

Platelets are small anucleate cells that play a key role in thrombosis and hemostasis. Our group previously identified apolipoprotein A-IV (apoA-IV) as an endogenous inhibitor of thrombosis by competitive blockade of the αIIbß3 integrin on platelets. ApoA-IV inhibition of platelets was dependent on the N-terminal D5/D13 residues, and enhanced with absence of the C-terminus, suggesting it sterically hinders its N-terminal platelet binding site. The C-terminus is also the site of common apoA-IV polymorphisms apoA-IV-1a (T347S) and apoA-IV-2 (Q360H). Interestingly, both are linked with an increased risk of cardiovascular disease, however, the underlying mechanism remains unclear. Here, we generated recombinant apoA-IV and found that the Q360H or T347S polymorphisms dampened its inhibition of platelet aggregation in human platelet-rich plasma and gel-filtered platelets, reduced its inhibition of platelet spreading, and its inhibition of P-selectin on activated platelets. Using an ex vivo thrombosis assay, we found that Q360H and T347S attenuated its inhibition of thrombosis at both high (1800s-1) and low (300s-1) shear rates. We then demonstrate a conserved monomer-dimer distribution among apoA-IV WT, Q360H, and T347S and use protein structure modelling software to show Q360H and T347S enhance C-terminal steric hindrance over the N-terminal platelet-binding site. These data provide critical insight into increased cardiovascular risk for individuals with Q360H or T347S polymorphisms.


Subject(s)
Apolipoproteins A , Blood Platelets , Platelet Aggregation , Thrombosis , Humans , Thrombosis/genetics , Thrombosis/metabolism , Platelet Aggregation/drug effects , Platelet Aggregation/genetics , Blood Platelets/metabolism , Blood Platelets/drug effects , Polymorphism, Genetic , Apoprotein(a)/genetics , Apoprotein(a)/metabolism , Apoprotein(a)/chemistry , P-Selectin/genetics , P-Selectin/metabolism
5.
Antioxid Redox Signal ; 40(7-9): 433-452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37265154

ABSTRACT

Aims: Studies demonstrated that oxidized fish oil (OFO) promoted oxidative stress and induced mitochondrial dysfunction and lipotoxicity, which attenuated beneficial effects of fish oil supplements in the treatment of nonalcoholic fatty liver disease (NAFLD). The current study was performed on yellow catfish, a good model to study NAFLD, and its hepatocytes to explore whether selenium (Se) could alleviate OFO-induced lipotoxicity via the inhibition of oxidative stress and determine its potential mechanism. Results: The analysis of triglycerides content, oxidative stress parameters, and histological and transmission electronic microscopy observation showed that high dietary Se supplementation alleviated OFO-induced lipotoxicity, oxidative stress, and mitochondrial injury and dysfunction. RNA-sequencing and immunoblotting analysis indicated that high dietary Se reduced OFO-induced decline of peroxisome-proliferator-activated receptor alpha (Pparα) and ubiquitin-specific protease 4 (Usp4) protein expression. High Se supplementation also alleviated OFO-induced reduction of thioredoxin reductase 2 (txnrd2) messenger RNA (mRNA) expression level and activity. The txnrd2 knockdown experiments revealed that txnrd2 mediated Se- and oxidized eicosapentaenoic acid (oxEPA)-induced changes of mitochondrial reactive oxygen species (mtROS) and further altered Usp4 mediated-deubiquitination and stabilization of Pparα, which, in turn, modulated mitochondrial fatty acid ß-oxidation and metabolism. Mechanistically, Usp4 deubiquitinated Pparα and ubiquitin-proteasome-mediated Pparα degradation contributed to oxidative stress-induced mitochondrial dysfunction. Innovation: These findings uncovered a previously unknown mechanism by which Se and OFO interacted to affect lipid metabolism via the Txnrd2-mtROS-Usp4-Pparα pathway, which provides the new target for NAFLD prevention and treatment. Conclusion: Se ameliorated OFO-induced lipotoxicity via the inhibition of mitochondrial oxidative stress, remodeling of Usp4-mediated deubiquitination, and stabilization of Pparα. Antioxid. Redox Signal. 40, 433-452.


Subject(s)
Mitochondrial Diseases , Non-alcoholic Fatty Liver Disease , Selenium , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Fish Oils/pharmacology , Fish Oils/metabolism , Selenium/pharmacology , Selenium/metabolism , PPAR alpha/genetics , Oxidoreductases/metabolism , Oxidative Stress , Mitochondrial Diseases/metabolism
6.
Free Radic Biol Med ; 210: 390-405, 2024 01.
Article in English | MEDLINE | ID: mdl-38048852

ABSTRACT

Manganese (Mn) is an essential element for maintaining normal metabolism in vertebrates. Mn dioxide nanoparticles (MnO2 NPs), a novel Mn source, have shown great potentials in biological and biomedical applications due to their distinct physical and chemical properties. However, little is known about potential adverse effects on animal or cellular metabolism. Here, we investigated whether and how dietary MnO2 NPs affect hepatic lipid metabolism in vertebrates. We found that, excessive MnO2 NPs intake increased hepatic and mitochondrial Mn content, promoted hepatic lipotoxic disease and lipogenesis, and inhibited hepatic lipolysis and fatty acid ß-oxidation. Moreover, excessive MnO2 NPs intake induced hepatic mitochondrial oxidative stress, damaged mitochondrial function, disrupted mitochondrial dynamics and activated mitophagy. Importantly, we uncovered that mtROS-activated phosphorylation of heat shock factor 1 (Hsf1) at Ser326 residue mediated MnO2 NPs-induced hepatic lipotoxic disease and mitophagy. Mechanistically, MnO2 NPs-induced lipotoxicity and mitophagy were via mtROS-induced phosphorylation and nucleus translocation of Hsf1 and its DNA binding capacity to plin2/dgat1 and bnip3 promoters, respectively. Overall, our findings uncover novel mechanisms by which mtROS-mediated mitochondrial dysfunction and phosphorylation of Hsf1S326 contribute to MnO2 NPs-induced hepatic lipotoxicity and mitophagy, which provide new insights into the effects of metal oxides nanoparticles on hepatotoxicity in vertebrates.


Subject(s)
Metal Nanoparticles , Nanoparticles , Animals , Manganese Compounds/chemistry , Manganese Compounds/metabolism , Oxides/toxicity , Oxides/chemistry , Oxides/metabolism , Phosphorylation , Mitophagy , Nanoparticles/toxicity
7.
ACS Sens ; 8(12): 4792-4800, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38073137

ABSTRACT

Inspired by natural molecular machines, scientists are devoted to designing nanomachines that can navigate in aqueous solutions, sense their microenvironment, actuate, and respond. Among different strategies, magnetically driven nanoactuators can easily be operated remotely in liquids and thus are valuable in biosensing. Here we report a magnetic nanoactuator swarm with rotating-magnetic-field-controlled conformational changes for reaction acceleration and target quantification. By grafting nucleic acid amplification primers, magnetic nanoparticle (MNP) actuators can assemble and be fixed with a flexible DNA scaffold generated by surface-localized hyperbranched rolling circle amplification in response to the presence of a target microRNA, osa-miR156. Net magnetic anisotropy changes of the system induced by the MNP assembly can be measured by ferromagnetic resonance spectroscopy as shifts in the resonance field. With a total assay time of ca. 120 min, the proposed biosensor offers a limit of detection of 6 fM with a dynamic detection range spanning 5 orders of magnitude. The specificity of the system is validated by testing different microRNAs and salmon sperm DNA. Endogenous microRNAs extracted from Oryza sativa leaves are tested with both quantitative reverse transcription-PCR and our approach, showing comparable performances with a Pearson correlation coefficient >0.9 (n = 20).


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/analysis , Seeds/chemistry , DNA/genetics , DNA/chemistry , Magnetics , Magnetic Phenomena
8.
Risk Manag Healthc Policy ; 16: 1521-1530, 2023.
Article in English | MEDLINE | ID: mdl-37602361

ABSTRACT

Background: Antimicrobial agents' wastage is a huge problem, especially for pediatric patients, resulting in excessive drug expenditure and increasing the economic burden on patients' families. Moreover, the cost of disposing of antimicrobial agents' waste and the risk of environmental and occupational exposure also increased. This study aimed to explore the cost-effectiveness of the vial-sharing strategy combined with the daily-rate charge mode for pediatric inpatients to provide a strategy for reducing patients' expenditures, saving medical costs, and reducing drug proportion. Methods: This retrospective study was conducted at Pharmacy Intravenous Admixture Service (PIVAS), Shenzhen Children's Hospital, Guangdong Province, China, in 2022. Data on prescription drugs were collected from the PIVAS system. Ten antimicrobial drugs with a frequency of prescriptions no less than twice once daily were selected, and the drug costs, drug weight, and drug saved were further analyzed according to the combination of real-time vial sharing strategy and daily-rate charge mode. Traditional single vial charge mode without vial sharing was set as a control strategy. The actual expenditure of the hospital was also calculated and analyzed. Results: During 2022, ¥ 4,122,099 (34.4%) was saved for inpatients by applying a vial-sharing strategy on ten antibacterial agents, and more than 46,343,750 mg (24.6%) of drugs were totally saved. The top 5 drugs saved by the real-time vial-sharing strategy were cefoperazone-sulbactam, vancomycin, amoxicillin-sulbactam, ceftazidime, and meropenem. Taken the price into consideration, the top five payment-saved drugs were vancomycin (¥ 1,522,385), meropenem (¥ 1,311,475), cefoperazone-sulbactam (¥ 736,697), imipenem-cilastatin (¥ 406,092), and amoxicillin-sulbactam (¥ 51,394). Moreover, the account balance of the hospital was up to ¥ 426,499. Conclusion: The real-time vial sharing strategy combined with the daily-rate charge mode greatly reduces drug wastage and patients' payments. It may be useful for hospitals with PIVAS to achieve vial-sharing while protecting the best interest of inpatients.

9.
Cancer Med ; 12(16): 16896-16905, 2023 08.
Article in English | MEDLINE | ID: mdl-37403701

ABSTRACT

OBJECTIVES: Perioperative cisplatin-based chemotherapy decreases the risk of death over surgery alone and is a standard of care. Here, we examined perioperative chemotherapy indications for stage IB-III non-small cell lung cancer (NSCLC) patients according to lobe-specific analysis. METHODS: Resectable NSCLC patients with stage IB-III who received perioperative chemotherapy with and without radiotherapy after lung resection were identified from the SEER database. Propensity score matching (PSM) analysis was performed to reduce the inherent bias of retrospective studies. The Kaplan-Meier method and log-rank tests were used to assess the differences in overall survival (OS). RESULTS: The study enrolled 23,844 patients before PSM. The perioperative chemotherapy group had better OS than the nonperioperative chemotherapy group in stage IB-III NSCLC patients before and after PSM. However, subgroup analysis according to stage demonstrated that perioperative chemotherapy did not markedly benefit patients with stage IB. Furthermore, lobar subgroup analysis did not show survival advantages in primary tumors located in either the right middle lobe in stages II and III NSCLC or the right lower lobe in stage III NSCLC. CONCLUSIONS: Lobe-specific perioperative chemotherapy is recommended in NSCLC patients. For stage IB NSCLC, right middle lobe NSCLC from stage IB-III and right lower lobe NSCLC from stage III, perioperative chemotherapy might not confer survival benefits.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/drug therapy , Lung Neoplasms/surgery , Retrospective Studies , Chemotherapy, Adjuvant , Cisplatin/therapeutic use , Neoplasm Staging
10.
J Trace Elem Med Biol ; 79: 127204, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37244044

ABSTRACT

BACKGROUND: Selenium (Se) functions through selenoproteins and is essential to growth and metabolism of vertebrates. The present study was conducted to identify twelve selenoproteins genes (selenoe, selenof, selenoh, selneoi, selenom, selenok, selneon, selenoo, selenot, selenos, selenou and msrb1) from yellow catfish. Their mRNA expression patterns, as well as their response to dietary oxidized fish oils and Se addition were explored. METHODS: We use 3'and 5' RACE PCR to clone full-length cDNA sequence of twelve selenoprotein genes from yellow catfish. Their mRNA expression patterns were assessed via quantitative real-time PCR. Yellow catfish were fed diet adequate Se+ fresh fish oil, adequate Se+ oxidized fish oil, high Se+ fresh fish oil and high Se+ oxidized fish oil, respectively, for 10 weeks. Their kidney, heart, brain and testis were used to assess the mRNA expression of twelve selenoprotein. RESULTS: Twelve selenoprotein genes had similar domains with mammals and the other fish. Their mRNAs were expressed widely in eleven tissues but varied with the tissues. Dietary oxidized fish oils and Se addition influenced their mRNA abundances of twelve selenoproteins in a tissue-dependent manner. CONCLUSION: Our study demonstrated the characterization and expression of twelve selenoproteins, and elucidated their responses in yellow catfish fed diets varying in oxidized fish oils and Se addition, which increased our knowledge into the biological function and regulatory mechanism of Se and selenoproteins in fish.


Subject(s)
Catfishes , Selenium , Male , Animals , Selenium/pharmacology , Selenium/metabolism , Fish Oils/metabolism , Catfishes/genetics , Liver/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism , Diet , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mammals/genetics , Mammals/metabolism
11.
Research (Wash D C) ; 6: 0124, 2023.
Article in English | MEDLINE | ID: mdl-37223472

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 virus is an ongoing global health burden. Severe cases of COVID-19 and the rare cases of COVID-19 vaccine-induced-thrombotic-thrombocytopenia (VITT) are both associated with thrombosis and thrombocytopenia; however, the underlying mechanisms remain inadequately understood. Both infection and vaccination utilize the spike protein receptor-binding domain (RBD) of SARS-CoV-2. We found that intravenous injection of recombinant RBD caused significant platelet clearance in mice. Further investigation revealed the RBD could bind platelets, cause platelet activation, and potentiate platelet aggregation, which was exacerbated in the Delta and Kappa variants. The RBD-platelet interaction was partially dependent on the ß3 integrin as binding was significantly reduced in ß3-/- mice. Furthermore, RBD binding to human and mouse platelets was significantly reduced with related αIIbß3 antagonists and mutation of the RGD (arginine-glycine-aspartate) integrin binding motif to RGE (arginine-glycine-glutamate). We developed anti-RBD polyclonal and several monoclonal antibodies (mAbs) and identified 4F2 and 4H12 for their potent dual inhibition of RBD-induced platelet activation, aggregation, and clearance in vivo, and SARS-CoV-2 infection and replication in Vero E6 cells. Our data show that the RBD can bind platelets partially though αIIbß3 and induce platelet activation and clearance, which may contribute to thrombosis and thrombocytopenia observed in COVID-19 and VITT. Our newly developed mAbs 4F2 and 4H12 have potential not only for diagnosis of SARS-CoV-2 virus antigen but also importantly for therapy against COVID-19.

12.
Front Pediatr ; 11: 1063795, 2023.
Article in English | MEDLINE | ID: mdl-36846157

ABSTRACT

Introduction: Many endocrine diseases, such as neuroblastoma (NB), can be linked with acquired cardiomyopathy and heart failure. Neuroblastoma's cardiovascular manifestations are typically hypertension, electrocardiogram (ECG) changes, and conduction disturbances. Case Presentation: A 5-year-old 8-month-old girl was admitted to the hospital with ventricular hypertrophy and hypertension (HT) and heart failure. She had no previous history of HT. On color doppler echocardiography, the left atrium and left ventricle were enlarged. The left ventricular ejection fraction (EF) was as low as 40%, and the ventricular septum and left ventricular free wall were thickened. The internal diameters of both coronary arteries were widened. Abdominal computed tomography scan (CT) demonstrated an 8.7 cm × 7.1 cm × 9.5 cm tumor behind the left peritoneum. In urine catecholamines analysis, free-norepinephrine (f-NE), free-dopamine (f-DA), free-normetanephrine (f-NMN), free-3-methoxytyramine (f-3MT), vanillylmandelic acid (VMA), and homovanillic acid (HVA) levels were all greater than the normal range for 24 h except free-metanephrine (f-MN) and free-epinephrine (f-E). Based on these findings, we diagnosed her as NB complicated by catecholamine cardiomyopathy manifested by hypertrophic cardiomyopathy (HCM). Oral metoprolol, spironolactone, captopril and amlodipine furosemide, and intravenously injected sodium nitroprusside and phentolamine were employed for treating HT. After the tumor resection, the blood pressure (BP) and urinary catecholamine levels were all restored. After a follow-up of 7 months, echocardiography indicated normalization of ventricular hypertrophy and function. Conclusion: This is a rare report showing catecholamine cardiomyopathy in NB children. Tumor resection leads to a return to normal of the catecholamine cardiomyopathy manifested as HCM.

13.
J Thromb Haemost ; 21(5): 1274-1288, 2023 05.
Article in English | MEDLINE | ID: mdl-36732162

ABSTRACT

BACKGROUND: Platelet GPIbα-von Willebrand factor (VWF) interaction initiates platelet adhesion, activation, and thrombus growth, especially under high shear conditions. Therefore, the GPIb-VWF axis has been suggested as a promising target against arterial thrombosis. The polysaccharide fucoidan has been reported to have opposing prothrombotic and antithrombotic effects; however, its binding mechanism with platelets has not been adequately studied. OBJECTIVE: The objective of this study was to explore the mechanism of fucoidan and its hydrolyzed products in thrombosis and hemostasis. METHODS: Natural fucoidan was hydrolyzed by using hydrochloric acid and was characterized by using size-exclusion chromatography, UV-visible spectroscopy, and fluorometry techniques. The effects of natural and hydrolyzed fucoidan on platelet aggregation were examined by using platelets from wild-type, VWF and fibrinogen-deficient, GPIbα-deficient, and IL4Rα/GPIbα-transgenic and αIIb-deficient mice and from human beings. Platelet activation markers (P-selectin expression, PAC-1, and fibrinogen binding) and platelet-VWF A1 interaction were measured by using flow cytometry. GPIbα-VWF A1 interaction was evaluated by using enzyme-linked immunosorbent assay. GPIb-IX-induced signal transduction was detected by using western blot. Heparinized whole blood from healthy donors was used to test thrombus formation and growth in a perfusion chamber. RESULTS: We found that GPIbα is critical for fucoidan-induced platelet activation. Fucoidan interacted with the extracellular domain of GPIbα and blocked its interaction with VWF but itself could lead to GPIbα-mediated signal transduction and, subsequently, αIIbß3 activation and platelet aggregation. Conversely, low-molecular weight fucoidan inhibited GPIb-VWF-mediated platelet aggregation, spreading, and thrombus growth at high shear. CONCLUSION: Fucoidan-GPIbα interaction may have unique therapeutic potential against bleeding disorders in its high-molecular weight state and protection against arterial thrombosis by blocking GPIb-VWF interaction after fucoidan is hydrolyzed.


Subject(s)
Thrombosis , von Willebrand Factor , Humans , Animals , Mice , von Willebrand Factor/metabolism , Blood Platelets/metabolism , Platelet Aggregation , Platelet Glycoprotein GPIb-IX Complex/metabolism , Polysaccharides/pharmacology , Thrombosis/drug therapy , Thrombosis/prevention & control , Thrombosis/metabolism , Fibrinogen/metabolism , Protein Binding
14.
Cancer Med ; 12(6): 7065-7076, 2023 03.
Article in English | MEDLINE | ID: mdl-36480232

ABSTRACT

BACKGROUND: Poor prognosis is linked to peripheral blood levels of preoperative platelet-lymphocyte ratio (PLR) and neutrophil-lymphocyte ratio (NLR) in many advanced cancers. Nevertheless, whether the correlation exists in resected early-stage cases with non-small cell lung cancer (NSCLC) stays controversial. Consequently, we performed a meta-analysis to explore the preoperative NLR and PLR's prognostic significance in early-stage patients with NSCLC undergoing curative surgery. METHODS: Relevant studies that validated the link between preoperative NLR or PLR and survival results were found via the proceeding databases: PubMed, Embase, Cochrane Library, and Web of Science. The merged 95% confidence interval (CI) and hazard ratio (HR) was employed to validate the link between the NLR or PLR's index and overall survival (OS) and disease-free survival (DFS) in resected NSCLC cases. We used sensitivity and subgroup analyses to assess the studies' heterogeneity. RESULTS: An overall of 21 studies were attributed to the meta-analysis. The findings indicated that great preoperative NLR was considerably correlated with poor DFS (HR = 1.58, 95% CI: 1.37-1.82, p < 0.001) and poor OS (HR = 1.51, 95% CI: 1.33-1.72, p < 0.001), respectively. Subgroup analyses were in line with the pooled findings. In aspect of PLR, raised PLR was indicative of inferior DFS (HR = 1.28, 95% CI: 1.04-1.58, p = 0.021) and OS (HR = 1.37, 95% CI: 1.18-1.60, p < 0.001). In the subgroup analyses between PLR and DFS, only subgroups with a sample size <300 (HR = 1.67, 95% CI: 1.15-2.43, p = 0.008) and TNM staging of mixed (I-II) (HR = 1.47, 95% CI: 1.04-2.07, p = 0.028) showed that the link between high PLR and poor DFS was significant. CONCLUSIONS: Preoperative elevated NLR and PLR may act as prognostic biomarkers in resected early-stage NSCLC cases and are therefore valuable for guiding postoperative adjuvant treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Neutrophils/metabolism , Lung Neoplasms/drug therapy , Clinical Relevance , Lymphocytes , Prognosis , Retrospective Studies
15.
Antioxidants (Basel) ; 11(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36290629

ABSTRACT

Currently, the effect of selenium and oxidized fish oil interactions on the intestinal lipid metabolism and antioxidant responses of fish remains unknown. Herein, yellow catfish Pelteobagrus fulvidraco (weight: 3.99 ± 0.01 g) were used as experimental animals and were fed four diets: an adequate amount of selenium (0.25 mg kg-1) with fresh fish oil (A-Se+FFO), an adequate amount of selenium with oxidized fish oil (A-Se+OFO), a high amount of selenium (0.50 mg kg-1) with fresh fish oil (H-Se+FFO), and a high amount of selenium with oxidized fish oil (H-Se+OFO). The feeding experiment was conducted for 10 weeks. The results showed that selenium supplementation alleviated the intestinal tissue damage and reduced the lipid accumulation that was induced by oxidized fish oils. Meanwhile, we also found that 0.50 mg kg-1 selenium reduced the oxidative stress that is caused by oxidized fish oils through increasing the GSH and the activity and mRNA expression of antioxidant enzymes. Dietary selenium and oxidized fish oils also affected the mRNA expression of intestinal selenoproteins including selenow2a, selenop2, and selenot2. Mechanistically, Se and oxidized eicosapentaenoic acid (oxEPA) influenced the GSH content by affecting the DNA binding ability of activating transcription factor (ATF) 3 to the slc7a11 promoter. For the first time, our results suggested that selenium alleviated the oxidized fish oil-induced intestinal lipid deposition and the oxidative stress of the fish. We also elucidated the novel mechanism of selenium increasing the GSH content by affecting the interaction of ATF3 and the slc7a11 promoter.

16.
Molecules ; 27(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35956952

ABSTRACT

The mechanism of ginsenoside Rh3 activity against cancer remains unclear. This study aimed to investigate the underlying mechanism. The effects of Rh3 on the cell proliferation, migration and invasion, and cycle and apoptosis were analyzed using CCK-8 assay, transwell migration assay and flow cytometry, respectively. The RNA transcriptome was sequenced and data were analyzed by R software. Protein expression and protein-protein interactions were determined by Western blotting and co-immunoprecipitation, respectively. The results showed Rh3 inhibited HCT116 cell proliferation, invasion, and migration, arrested cells at G1 phase; and increased apoptosis. Rh3 downregulated 314 genes and upregulated 371 genes. Gene Set Enrichment Analysis (GSEA) using The Kyoto Encyclopedia of Genes Genomics ranked DNA replication first, while GSEA using Gene Ontology ranked the initiation of DNA replication first. Compared with tumor data from The Cancer Genome Atlas (TCGA), most of genes related to DNA replication were oppositely regulated by Rh3. Furthermore, Rh3 down-regulated key protein expression related to DNA replication (Orc6, Cdt1, and Mcm2), but did not affect the loading of Mcm complexes onto ORC complexes nor the phosphorylation at ser139 of Mcm2. Therefore, Rh3 may inhibit colorectal cancer HCT116 cells by downregulation of genes related to DNA replication.


Subject(s)
Colorectal Neoplasms , Ginsenosides , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Profiling , Ginsenosides/pharmacology , HCT116 Cells , Humans
17.
Foods ; 11(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35804804

ABSTRACT

The Gram-negative strain of Citrobacter freundii, YNLX, has the ability to degrade hyaluronic acid. In this study, we expressed a C. freundii hyaluronic acid lyase, from polysaccharide lyase family 8, in Escherichia coli. The purified recombinant enzyme (rHynACF8) showed a substantially higher cleavage activity of hyaluronic acid than chondroitin sulfate. We found that its optimal pH and temperature are 5.5 and 35 °C, respectively. In addition, the enzyme activity was not notably affected by most metal ions. Km and kcat of rHynACF8 towards HA were 1.5 ± 0.01 mg/mL and 30.9 ± 0.5 /s, respectively. rHynACF8 is an endo-acting enzyme. Its cleavage products had dramatically increased antioxidant activity than hyaluronic acid in vitro (p < 0.001). As the molecular weight of hyaluronic acid decreased, the intramolecular interactions among antioxidant functional groups were removed; in the process of the cracking reaction, new double bonds formed and conjugated with the carbonyl group. We presumed that the structural change is the critical factor influencing antioxidant capacity. Overall, we found that rHynACF8 from Gram-negative bacteria with metal ion resistance, indicated the relationship between the function and structure of its antioxidant cleavage product.

18.
Cancers (Basel) ; 14(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35805037

ABSTRACT

(1) Background: Sublobar resection can be used as an alternative surgical strategy for early-stage non-small-cell lung cancer (NSCLC) patients. However, the choice between wedge resection and segmentectomy remains contentious. In this study, we investigated the optimal surgical procedure for sublobar resection in patients with NSCLC ≤ 2 cm with a lobe-specific analysis; (2) Methods: Data for patients with T1N0M0 with a diameter of ≤2 cm who had undergone sublobar resection were retrieved. Propensity score matching (PSM) was used to reduce the inherent bias, and the Kaplan-Meier method and log-rank tests were used to assess the differences in survival; (3) Results: A total of 1882 patients were identified after the PSM. Patients with NSCLC ≤ 2 cm who had undergone segmentectomy showed better survival than those who had undergone wedge resection. However, when NSCLC was ≤1 cm, there was no significant difference in OS between the two groups. This demonstrated an OS advantage of segmentectomy over wedge resection for patients with NSCLC tumors of 1-2 cm (p = 0.024). Further analysis indicated that this survival benefit was only observed in patients with right upper NSCLC of 1-2 cm, but not with NSCLC in the other four lobes; (4) Conclusions: Segmentectomy showed a greater survival benefit than wedge resection only in patients with NSCLC of 1-2 cm, particularly those with primary tumors in the right upper lobe. Therefore, we propose a lobe-specific sublobar resection strategy for early-stage NSCLC patients (tumors of 1-2 cm) who cannot tolerate lobectomy.

19.
Transl Lung Cancer Res ; 11(6): 1176-1184, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35832448

ABSTRACT

Background: Pulmonary carcinoids (PC), including typical (TC) and atypical carcinoids (AC), are low-grade neuroendocrine tumors (NETs) which account for 1-5% of all lung tumors. Due to the low prevalence of PC and extreme rarity of anaplastic lymphoma kinase (ALK) rearrangements in patients with PC, the advances in targeted therapy development in PC are still limited and there is no standard treatment. Even though in patients with PC harboring ALK rearrangements there is a room for a success in targeted therapy. To our knowledge, case 1 was the first report to detect ALK gene p.I1171N mutation after taking alectinib and sensitive to ceritinib in patients with atypical carcinoid. Case Description: Herein, we report the cases of 2 non-smoking patients, 51 year-old female with tumor in left lower lobe and 49 year-old female with tumor in right upper lobe, both with metastatic PC who harbored EML4-ALK fusion and were sensitive to small-molecule ALK inhibitors. The first patient initially received alectinib, then therapy was switched to ceritinib after developing drug resistance due to the missense mutation of ALK gene p.I1171N mutation in exon 22 detected by next-generation sequencing (NGS), and finally died of intracranial disease progression. The second patient also received alectinib, and her treatment is currently ongoing with good effect and tolerance. After conducting comprehensive review of literature, we found that 14 lung NETs with ALK rearrangements have been reported to date. The clinical outcome was partial response for 6 NETs patients and 5 patients exhibited stable disease after treatment with ALK inhibitors. Conclusions: According to the effectiveness of ALK inhibitors in our cases and previous articles, we recommend alectinib for the first-line treatment of metastatic PC with EML4-ALK fusion and highlight the need for molecular profiling of metastatic lung NETs patients and that ALK inhibitors are feasible in the treatment for metastatic lung NETs patients with ALK rearrangements. Finally, further studies to assess the real prevalence of ALK gene fusions and their spectrum of sensitivity to different ALK inhibitors are needed in larger cohorts.

20.
Cell Mol Life Sci ; 79(5): 240, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35416530

ABSTRACT

Ischemic stroke is a leading cause of death and disability worldwide. Increasing evidence indicates that ischemic stroke is a thromboinflammatory disease in which the contact-kinin pathway has a central role by activating pro-coagulant and pro-inflammatory processes. The blocking of distinct members of the contact-kinin pathway is a promising strategy to control ischemic stroke. Here, a plasma kallikrein and active FXII (FXIIa) inhibitor (sylvestin, contained 43 amino acids, with a molecular weight of 4790.4 Da) was first identified from forest leeches (Haemadipsa sylvestris). Testing revealed that sylvestin prolonged activated partial thromboplastin time without affecting prothrombin time. Thromboelastography and clot retraction assays further showed that it extended clotting time in whole blood and inhibited clot retraction in platelet-rich plasma. In addition, sylvestin prevented thrombosis in vivo in FeCl3-induced arterial and carrageenan-induced tail thrombosis models. The potential role of sylvestin in ischemic stroke was evaluated by transient and permanent middle cerebral artery occlusion models. Sylvestin administration profoundly protected mice from ischemic stroke by counteracting intracerebral thrombosis and inflammation. Importantly, sylvestin showed no signs of bleeding tendency. The present study identifies sylvestin is a promising contact-kinin pathway inhibitor that can proffer profound protection from ischemic stroke without increased risk of bleeding.


Subject(s)
Ischemic Stroke , Stroke , Thrombosis , Animals , Inflammation/drug therapy , Inflammation/prevention & control , Kinins , Mice , Stroke/drug therapy , Thromboinflammation , Thrombosis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...