Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chemistry ; 30(36): e202400850, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38656583

ABSTRACT

The stable ferrocene-based N-heterocyclic silylenes fc[(N{B})2Si] (A; fc=1,1'-ferrocenylene, {B}=(HCNDipp)2B, Dipp=2,6-diisopropylphenyl) and fc[(NDipp)2Si] (B) are compared in a study focussing on their reactivity towards a range of small to moderately sized molecular substrates, viz. P4, S8, Se8, MesN3 (Mes=mesityl), RC≡CH, and RC≡CR (R=Ph, SiMe3). The Dipp-substituted congener B exhibits a more pronounced ambiphilicity and is sterically less congested than its 1,3,2-diazaborolyl-substituted relative A, in line with the higher reactivity of the former. The difference in reactivity is obviously due more to electronic than to steric reasons, as is illustrated by the fact that both A and B react with the comparatively bulky substrate MesN3 under mild conditions to afford the corresponding silanimine fc[(N{B})2Si=NMes] and fc[(NDipp)2Si=NMes], respectively. The heavier ketone analogues fc[(N{B})2Si=E] (E=S, Se, Te) are readily available from A and the corresponding chalcogen. In contrast, the reaction of the more reactive silylene B with elemental sulfur or selenium is unspecific, affording product mixtures. However, fc[(NDipp)2Si=Se] is selectively prepared from B and (Et2N)3PSe; the Te analogue is also accessible, but crystallises as head-to-tail dimer.

2.
Chem Asian J ; 18(13): e202300266, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37170939

ABSTRACT

Ferrocene-based N-heterocyclic plumbylenes fc[(NSiMe2 R)2 Pb:] (1; fc=1,1'-ferrocenylene) are easily accessible by transamination from [(Me3 Si)2 N]2 Pb and the corresponding 1,1'-diaminoferrocene derivatives fc(NHSiMe2 R)2 . They may form unconventional dimers 2 by a process, which causes the cleavage of a cyclopentadienyl C-H bond and the formation of a Pb-C and an N-H bond. The monomer-dimer equilibrium (2 1⇆2) has been addressed experimentally and computationally. It critically depends on the steric demand of the N-substituents SiMe2 R, which has been varied systematically by using homologues with aliphatic (R=methyl, ethyl, isopropyl, tert-butyl) and aromatic units (R=phenyl, mesityl, ferrocenyl). Even in the sterically least congested case (R=methyl), dimerization is only slightly exergonic. It eventually becomes prohibitively endergonic with increasingly larger substituents and is thus not observed for R=tert-butyl, mesityl, and ferrocenyl. R=phenyl represents a borderline case, where the dimer is still detectable in the equilibrium mixture, albeit as a very minor component, in accord with the slightly endergonic Gibbs free energy change calculated for its formation. Addition of 4-dimethylaminopyridine (DMAP) to the monomer-dimer equilibrium mixtures cleanly affords the corresponding adducts [1(DMAP)], irrespective of the equilibrium composition.

3.
Chem Commun (Camb) ; 58(74): 10396-10399, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36039867

ABSTRACT

Cyclic (alkyl)(amino)carbenes with a 1,1'-ferrocenylene backbone (fcCAACs) are established as an original family by the preparation of a crystalline congener. The Ccarbene bond angle is unprecedentedly wide for a CAAC, causing an exceptionally pronounced ambiphilicity. The redox-active backbone opens the door to unconventional metalloradicals and oligoradicals.


Subject(s)
Methane , Methane/analogs & derivatives , Methane/chemistry
4.
Molecules ; 22(7)2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28686202

ABSTRACT

This study was motivated by our recent observation that the analytical reagent Nitron (2) is an "instant carbene", whose reaction with coinage metal salts MX afforded complexes of its carbenic tautomer 1,4-diphenyl-3-phenylamino-1,2,4-triazol-5-ylidene (2'). Our aim was to establish an alkyl homologue of 2 in order to achieve a carbenic tautomer of higher donicity. For this purpose 1-tert-butyl-4-methyl-1,2,4-triazol-4-ium-3-tert-butylaminide (6) was synthesized. Its reactions with MX afforded complexes of the carbenic tautomer 1-tert-butyl-3-tert-butylamino-4-methyl-1,2,4-triazol-5-ylidene (6'). With a stoichiometric ratio of 1:1 complexes of the type [MX(6')] were obtained. A ratio of 2:1 furnished complexes of the type [MX(6')2] or [M(6')2]X. 6' is a better σ-donor and less electrophilic than 2' according to NMR spectroscopic data of 6H[BF4] and 6' = Se, respectively, and IR spectroscopic data of [RhCl(6')(CO)2] confirm that its net electron donor capacity is superior to that of 2'. A comparison of the complexes of 2' and 6' reveals two pronounced structural differences. [CuX(6')2] (X = Cl, Br) exhibit more acute C‒Cu‒C bond angles than [CuX(2')2]. In contrast to [CuCl(2')], [CuCl(6')] aggregates through Cu···Cu contacts of ca. 2.87 Å, compatible with cuprophilic interactions. These differences may be explained by the complementary steric requirements of the t-Bu and the Me substituent of 6'.


Subject(s)
Betaine/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Triazoles/chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray/methods , Magnetic Resonance Spectroscopy/methods , Methane/analogs & derivatives , Methane/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Triazoles/chemical synthesis
5.
Chemistry ; 23(5): 1187-1199, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-27859833

ABSTRACT

We describe ferrocene-based N-heterocyclic germylenes and stannylenes of the type [Fe{(η5 -C5 H4 )NR}2 E:] (1 RE; E=Ge, Sn; R=neopentyl (Np), mesityl (Mes), trimethylsilyl (TMS)), which constitute the first examples of redox-functionalised N-heterocyclic tetrylenes (NHTs). These compounds are thermally stable and were structurally characterised by means of X-ray diffraction studies, except for the neopentyl-substituted stannylene 1 NpSn, the decomposition of which afforded the aminoiminoferrocene [fc(NHCH2 tBu)(N=CHtBu)] (2) and the spiro tin(IV) compound (1 Np)2 Sn (3). DFT calculations show that the HOMO of the NHTs of our study is localised on the ferrocenylene backbone. A one-electron oxidation process affords ions of the type 1 RE+. . In contrast to the NHC system 1 RC, the localised ferrocenium-type nature of the oxidised form does not compromise the fundamental tetrylene character of 1 RE+. .

6.
Chemistry ; 21(40): 14107-21, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26307236

ABSTRACT

The portfolio of acyclic diaminocarbenes (ADACs) has been substantially expanded, owing to the synthesis of eleven new formamidinium salts, mostly of the type [(iPr2N)CH(NRR')][PF6], for use as immediate carbene precursors. The corresponding ADACs (iPr2N)C(NRR') were sufficiently stable for isolation in the case of NRR' = 2-methylpiperidino (13), 3-methylpiperidino (14), 4-methylpiperidino (15), morpholino (17) and NiPrPh (20), but had to be trapped in situ in the case of NRR' = 2,2,6,6-tetramethylpiperidino (12) and NiPrMe (19). The tetraaryl-substituted ADACs (Ph2N)2C (22) and (Ph2N)C[N(C6F5)2] (24) also could only be generated and trapped in situ. Trapping with elemental selenium was particularly efficient, affording the corresponding selenourea derivative in all cases, whereas trapping with [{Rh(µ-Cl)(cod)}2] did not work for 12 and 24. The (77)Se NMR chemical shifts, δ((77)Se), of the selenourea compounds derived from the new ADACs lie in the range 450-760 ppm, which indicates a much higher electrophilicity and π-accepting capability of ADACs in comparison with NHCs, which typically exhibit δ((77)Se)<200 ppm. The extreme low-field shift of 758 ppm observed for 12Se can be rationalised by the results of DFT calculations, which revealed that ADAC 12 has a minimum energy conformation with the 2,2,6,6-tetramethylpiperidino unit perpendicular to the N2C plane, which suppresses the π donation of this amino group and causes an unusually low LUMO energy and high electrophilicity.

7.
Inorg Chem ; 54(13): 6657-70, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26098133

ABSTRACT

This paper focuses on the stable, ferrocene-based N-heterocyclic carbene (NHC) rac-[Fe{(η(5)-t-BuC5H3)NpN}2C:] (A'-Np, Np = neopentyl), which is planar-chiral due to the two tert-butyl substituents in 3,3'-positions. A'-Np was synthesized in nine steps starting from 1,1'-di-tert-butylferrocene (1), the first step being its 3,3'-dilithiation to afford rac-[Fe(η(5)-t-BuC5H3Li)2] (rac-fc'Li2, 2). The structures of rac-fc'(SiMe3)2 (3), rac-fc'Br2 (4), rac-fc'(N3)2 (5), and the immediate carbene precursor [A'-NpH]BF4 were determined by single-crystal X-ray diffraction (XRD). The chemical properties of A'-Np were found to be very similar to those of its tert-butyl-free congener A-Np, both being ambiphilic NHCs with rather high calculated HOMO energies (ca. -4.0 eV) and low singlet-triplet gaps (ca. 35 kcal/mol). A Tolman electronic parameter value of 2050 cm(-1) was derived from IR data of cis-[RhCl(A'-Np)(CO)2], indicating the high donicity of A'-Np as a ligand. Consistent with its ambiphilic nature, A'-Np was found to react readily with carbon monoxide, affording the betainic enolate (A'-Np)2CO as four stereoisomers, viz. (RpRp-A'-Np)═C(O(-))(RpRp-A'-Np(+)), (SpSp-A'-Np)═C(O(-))(SpSp-A'-Np(+)), (RpRp-A'-Np)═C(O(-))(SpSp-A'-Np(+)), and (SpSp-A'-Np)═C(O(-))(RpRp-A'-Np(+)). The former two isomers were structurally characterized as a racemic compound by single-crystal XRD. A'-Np was found to react swiftly with dichloromethane, affording the addition product A'-NpH-CHCl2 in a reaction that is unprecedented for diaminocarbenes. A-NpH-CHCl2 was obtained analogously. Both compounds were structurally characterized by single-crystal XRD. An electrochemical investigation of A'-Np by cyclic and square wave voltammetry revealed a reversible oxidation of the carbene at a half-wave potential of -0.310 vs ferrocene/ferrocenium (THF/NBu4PF6). The electrochemical data previously published for A-Np were identified to be incorrect, since unnoticed hydrolysis of the NHC had taken place, affording A-Np(H2O). The hydrolysis products of A-Np and A'-Np were found to be reversibly oxidized at half-wave potentials of -0.418 and -0.437 V, respectively.

10.
Chem Commun (Camb) ; 49(61): 6834-6, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23712509

ABSTRACT

The reactions of the acyclic diaminocarbenes (Me2N)2C and (Ph2N)(iPr2N)C with CO proceed in a 2 : 1 stoichiometric ratio, affording unprecedented betainic oxyallyl species of type [(R2N)2C]2CO.


Subject(s)
Alkynes/chemical synthesis , Dioxolanes/chemical synthesis , Alkynes/chemistry , Dioxolanes/chemistry , Models, Molecular , Molecular Structure
11.
Chem Commun (Camb) ; 48(73): 9123-5, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22864196

ABSTRACT

The "Alder carbene" (iPr(2)N)(2)C undergoes a ß-fragmentation in solution already at room temperature, affording propene and N,N,N'-triisopropylformamidine. This stands in sharp contrast to the indefinite stability previously claimed for this iconic compound.

12.
Chem Commun (Camb) ; 48(2): 227-9, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22068309

ABSTRACT

The analytical reagent Nitron is a mesoionic compound whose structure consists of a cationic triazolium unit with an anionic PhN substituent. We provide clear evidence for the existence of a singlet diaminocarbene tautomer whose structure is composed of a 1,2,4-triazol-5-ylidene unit bearing an NHPh substituent.

13.
J Am Chem Soc ; 133(10): 3557-69, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21332207

ABSTRACT

Quantum-chemical calculations using DFT and ab initio methods have been carried out for 32 carbenes RR'C which comprise different classes of compounds and the associated ketenes RR'C═C═O. The calculated singlet-triplet gaps ΔE(S-T) of the carbenes exhibit a very high correlation with the bond dissociation energies (BDEs) of the ketenes. An energy decomposition analysis of the RR'C-CO bond using the triplet states of the carbene and CO as interacting fragments supports the assignment of ΔE(S-T) as the dominant factor for the BDE but also shows that the specific interactions of the carbene may sometimes compensate for the S/T gap. The trend of the interaction energy ΔE(int) values is mainly determined by the Pauli repulsion between the carbene and CO. The stability of amino-substituted ketenes strongly depends on the destabilizing conjugation between the nitrogen lone-pair orbital and the ketene double bonds. There is a ketene structure of the unsaturated N-heterocyclic carbene parent compound NHC1 with CO as a local energy minimum on the potential-energy surface. However, the compound NHC1-CO is thermodynamically unstable toward dissociation. The saturated homologue NHC2-CO has only a very small bond dissociation energy of D(e) = 3.2 kcal/mol. The [3]ferrocenophane-type compound FeNHC-CO has a BDE of D(e) = 16.0 kcal/mol.

SELECTION OF CITATIONS
SEARCH DETAIL
...