Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 9(4)2020 04 18.
Article in English | MEDLINE | ID: mdl-32325693

ABSTRACT

An injury to peripheral nerves leads to skin denervation, which often is followed by increased pain sensitivity of the denervated areas and the development of neuropathic pain. Changes in innervation patterns during the reinnervation process of the denervated skin could contribute to the development of neuropathic pain. Here, we examined the changes in the innervation pattern during reinnervation and correlated them with the symptoms of neuropathic pain. Using a multispectral labeling technique-PainBow, which we developed, we characterized dorsal root ganglion (DRG) neurons innervating distinct areas of the rats' paw. We then used spared nerve injury, causing partial denervation of the paw, and examined the changes in innervation patterns of the denervated areas during the development of allodynia and hyperalgesia. We found that, differently from normal conditions, during the development of neuropathic pain, these areas were mainly innervated by large, non-nociceptive neurons. Moreover, we found that the development of neuropathic pain is correlated with an overall decrease in the number of DRG neurons innervating these areas. Importantly, treatment with ouabain facilitated reinnervation and alleviated neuropathic pain. Our results suggest that local changes in peripheral innervation following denervation contribute to neuropathic pain development. The reversal of these changes decreases neuropathic pain.


Subject(s)
Ganglia, Spinal/injuries , Hyperalgesia/physiopathology , Neuralgia/physiopathology , Skin/pathology , Animals , Behavior, Animal/physiology , Ganglia, Spinal/physiopathology , Hyperalgesia/complications , Male , Neuralgia/etiology , Neurogenesis/physiology , Neurons/pathology , Neurons/physiology , Rats, Sprague-Dawley , Skin/innervation
2.
J Physiol ; 595(3): 713-738, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27506492

ABSTRACT

KEY POINTS: Neuroinflammation associated with CNS insults leads to neuronal hyperexcitability, which may culminate in epileptiform discharges. Application of the endotoxin lipopolysaccharide (LPS) to brain tissue initiates a neuroinflammatory cascade, providing an experimental model to study the mechanisms of neuroinflammatory neuronal hyperexcitability. Here we show that LPS application to hippocampal slices markedly enhances the excitability of CA1 pyramidal cells by inhibiting a specific potassium current, the M-current, generated by KV 7/M channels, which controls the excitability of almost every neuron in the CNS. The LPS-induced M-current inhibition is triggered by sequential activation of microglia, astrocytes and pyramidal cells, mediated by metabotropic purinergic and glutamatergic transmission, leading to blockade of KV 7/M channels by calcium released from intracellular stores. The identification of the downstream molecular target of neuroinflammation, namely the KV 7/M channel, potentially has far reaching implications for the understanding and treatment of many acute and chronic brain disorders. ABSTRACT: Acute brain insults and many chronic brain diseases manifest an innate inflammatory response. The hallmark of this response is glia activation, which promotes repair of damaged tissue, but also induces structural and functional changes that may lead to an increase in neuronal excitability. We have investigated the mechanisms involved in the modulation of neuronal activity by acute inflammation. Initiating inflammatory responses in hippocampal tissue rapidly led to neuronal depolarization and repetitive firing even in the absence of active synaptic transmission. This action was mediated by a complex metabotropic purinergic and glutamatergic glia-to-neuron signalling cascade, leading to the blockade of neuronal KV 7/M channels by Ca2+ released from internal stores. These channels generate the low voltage-activating, non-inactivating M-type K+ current (M-current) that controls intrinsic neuronal excitability, and its inhibition was the predominant cause of the inflammation-induced hyperexcitability. Our discovery that the ubiquitous KV 7/M channels are the downstream target of the inflammation-induced cascade, has far reaching implications for the understanding and treatment of many acute and chronic brain disorders.


Subject(s)
KCNQ Potassium Channels/physiology , Lipopolysaccharides/pharmacology , Pyramidal Cells/drug effects , Animals , Astrocytes/drug effects , Astrocytes/physiology , CA1 Region, Hippocampal/cytology , Calcium/physiology , Male , Pyramidal Cells/physiology , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/physiology , Receptors, Metabotropic Glutamate/physiology , Receptors, Purinergic P2Y1/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...