Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5663, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969633

ABSTRACT

Optical atomic clocks are the most accurate and precise measurement devices of any kind, enabling advances in international timekeeping, Earth science, fundamental physics, and more. However, there is a fundamental tradeoff between accuracy and precision, where higher precision is achieved by using more atoms, but this comes at the cost of larger interactions between the atoms that limit the accuracy. Here, we propose a many-ion optical atomic clock based on three-dimensional Coulomb crystals of order one thousand Sn2+ ions confined in a linear RF Paul trap with the potential to overcome this limitation. Sn2+ has a unique combination of features that is not available in previously considered ions: a 1S0 ↔ 3P0 clock transition between two states with zero electronic and nuclear angular momentum (I = J = F = 0) making it immune to nonscalar perturbations, a negative differential polarizability making it possible to operate the trap in a manner such that the two dominant shifts for three-dimensional ion crystals cancel each other, and a laser-accessible transition suitable for direct laser cooling and state readout. We present calculations of the differential polarizability, other relevant atomic properties, and the motion of ions in large Coulomb crystals, in order to estimate the achievable accuracy and precision of Sn2+ Coulomb-crystal clocks.

2.
Phys Rev Lett ; 130(22): 223201, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37327411

ABSTRACT

We characterize and model the Stark effect due to the radio-frequency (rf) electric field experienced by a molecular ion in an rf Paul trap, a leading systematic in the uncertainty of the field-free rotational transition. The ion is deliberately displaced to sample different known rf electric fields and measure the resultant shifts in transition frequencies. With this method, we determine the permanent electric dipole moment of CaH^{+}, and find close agreement with theory. The characterization is performed by using a frequency comb which probes rotational transitions in the molecular ion. With improved coherence of the comb laser, a fractional statistical uncertainty for a transition line center of as low as 4.6×10^{-13} was achieved.


Subject(s)
Electricity , Light
3.
Phys Rev Lett ; 129(19): 193603, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36399738

ABSTRACT

In quantum logic spectroscopy (QLS), one species of trapped ion is used as a sensor to detect the state of an otherwise inaccessible ion species. This extends precision measurements to a broader class of atomic and molecular systems for applications like atomic clocks and tests of fundamental physics. Here, we develop a new technique based on a Schrödinger cat interferometer to address the problem of scaling QLS to larger ion numbers. We demonstrate the basic features of this method using various combinations of ^{25}Mg^{+} logic ions and ^{27}Al^{+} spectroscopy ions. We observe higher detection efficiency by increasing the number of ^{25}Mg^{+} ions. Applied to multiple ^{27}Al^{+}, this method will improve the stability of high-accuracy optical clocks and could enable Heisenberg-limited QLS.

4.
Nature ; 581(7808): 273-277, 2020 05.
Article in English | MEDLINE | ID: mdl-32433622

ABSTRACT

Conventional information processors convert information between different physical carriers for processing, storage and transmission. It seems plausible that quantum information will also be held by different physical carriers in applications such as tests of fundamental physics, quantum enhanced sensors and quantum information processing. Quantum controlled molecules, in particular, could transduce quantum information across a wide range of quantum bit (qubit) frequencies-from a few kilohertz for transitions within the same rotational manifold1, a few gigahertz for hyperfine transitions, a few terahertz for rotational transitions, to hundreds of terahertz for fundamental and overtone vibrational and electronic transitions-possibly all within the same molecule. Here we demonstrate entanglement between the rotational states of a 40CaH+ molecular ion and the internal states of a 40Ca+ atomic ion2. We extend methods used in quantum logic spectroscopy1,3 for pure-state initialization, laser manipulation and state readout of the molecular ion. The quantum coherence of the Coulomb coupled motion between the atomic and molecular ions enables subsequent entangling manipulations. The qubit addressed in the molecule has a frequency of either 13.4 kilohertz1 or 855 gigahertz3, highlighting the versatility of molecular qubits. Our work demonstrates how molecules can transduce quantum information between qubits with different frequencies to enable hybrid quantum systems. We anticipate that our method of quantum control and measurement of molecules will find applications in quantum information science, quantum sensors, fundamental and applied physics, and controlled quantum chemistry.

5.
Phys Rev Lett ; 125(24): 243602, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33412042

ABSTRACT

Laser decoherence limits the stability of optical clocks by broadening the observable resonance linewidths and adding noise during the dead time between clock probes. Correlation spectroscopy avoids these limitations by measuring correlated atomic transitions between two ensembles, which provides a frequency difference measurement independent of laser noise. Here, we apply this technique to perform stability measurements between two independent clocks based on the ^{1}S_{0}↔^{3}P_{0} transition in ^{27}Al^{+}. By stabilizing the dominant sources of differential phase noise between the two clocks, we observe coherence between them during synchronous Ramsey interrogations as long as 8 s at a frequency of 1.12×10^{15} Hz. The observed contrast in the correlation spectroscopy signal is consistent with the 20.6 s ^{3}P_{0} state lifetime and represents a measurement instability of (1.8±0.5)×10^{-16}/sqrt[τ/s] for averaging periods longer than the probe duration when dead time is negligible.

6.
Nature ; 545(7653): 203-207, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28492258

ABSTRACT

Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.

7.
Phys Rev Lett ; 114(25): 253902, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26197127

ABSTRACT

We present and analyze a method of laser-frequency stabilization via steady-state patterns of spectral holes in Eu(3+)∶Y(2)SiO(5). Three regions of spectral holes are created, spaced in frequency by the ground-state hyperfine splittings of (151)Eu(3+). The absorption pattern is shown not to degrade after days of laser-frequency stabilization. An optical frequency comparison of a laser locked to such a steady-state spectral-hole pattern with an independent cavity-stabilized laser and a Yb optical lattice clock demonstrates a spectral-hole fractional frequency instability of 1.0×10(-15)τ(-1/2) that averages to 8.5(-1.8)(+4.8)×10(-17) at τ=73 s. Residual amplitude modulation at the frequency of the rf drive applied to the fiber-coupled electro-optic modulator is reduced to less than 1×10(-6) fractional amplitude modulation at τ>1 s by an active servo. The contribution of residual amplitude modulation to the laser-frequency instability is further reduced by digital division of the transmission and incident photodetector signals to less than 1×10(-16) at τ>1 s.

8.
Phys Rev Lett ; 111(23): 237402, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24476301

ABSTRACT

We present and analyze four frequency measurements designed to characterize the performance of an optical frequency reference based on spectral hole burning in Eu3+:Y2SiO5. The first frequency comparison, between a single unperturbed spectral hole and a hydrogen maser, demonstrates a fractional frequency drift rate of 5×10(-18) s(-1). Optical frequency comparisons between a pattern of spectral holes, a Fabry-Pérot cavity, and an Al(+) optical atomic clock show a short-term fractional frequency stability of 1×10(-15)τ(-1/2) that averages down to 2.5(-0.5)(+1.1)×10(-16) at τ=540 s (with linear frequency drift removed). Finally, spectral-hole patterns in two different Eu(3+):Y2SiO(5) crystals located in the same cryogenic vessel are compared, yielding a short-term stability of 7×10(-16)τ(-1/2) that averages down to 5.5(-0.9)(+1.8)×10(-17) at τ=204 s (with quadratic frequency drift removed).

9.
Opt Express ; 19(11): 10278-86, 2011 May 23.
Article in English | MEDLINE | ID: mdl-21643285

ABSTRACT

We operate a frequency-stable laser in a non-laboratory environment where the test platform is a passenger vehicle. We measure the acceleration experienced by the laser and actively correct for it to achieve a system acceleration sensitivity of Δf / f = 11(2) × 10(−12)/g, 6(2) × 10(−12)/g, and 4(1) × 10(−12)/g for accelerations in three orthogonal directions at 1 Hz. The acceleration spectrum and laser performance are evaluated with the vehicle both stationary and moving. The laser linewidth in the stationary vehicle with engine idling is 1.7(1) Hz.

10.
Opt Express ; 19(4): 3471-82, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21369170

ABSTRACT

We present an optical cavity design that is insensitive to both vibrations and orientation. The design is based on a spherical cavity spacer that is held rigidly at two points on a diameter of the sphere. Coupling of the support forces to the cavity length is reduced by holding the sphere at a "squeeze insensitive angle" with respect to the optical axis. Finite element analysis is used to calculate the acceleration sensitivity of the spherical cavity for the ideal geometry as well as for several varieties of fabrication errors. The measured acceleration sensitivity for an initial, sub-ideal version of the mounted cavity is 4.0(5)×10(-11)/g, 1.6(3)×10(-10)/g, and 3.1(1)×10(-10)/g (where g = 9.81 m/s2) for accelerations along the vertical and two horizontal directions, and the fractional frequency stability of a laser locked to the cavity is 1.2×10(-15) between 0.4 and 13 s. This low acceleration sensitivity combined with the orientation insensitivity that comes with a rigid mount indicates that this cavity design could allow frequency stable lasers to operate in non-laboratory environments.

11.
Opt Express ; 18(18): 18744-51, 2010 Aug 30.
Article in English | MEDLINE | ID: mdl-20940767

ABSTRACT

We demonstrate a method to measure and actively reduce the coupling of vibrations to the phase noise of a cavity-stabilized laser. This method uses the vibration noise of the laboratory environment rather than active drive to perturb the optical cavity. The laser phase noise is measured via a beat note with a second unperturbed ultra-stable laser while the vibrations are measured by accelerometers positioned around the cavity. A Wiener filter algorithm extracts the frequency and direction dependence of the cavity response function. Once the cavity response function is known, real-time noise cancellation can be implemented by use of the accelerometer measurements to predict and then cancel the laser phase fluctuations. We present real-time noise cancellation that results in a 25 dB reduction of the laser phase noise power spectral density.

12.
Phys Rev Lett ; 103(10): 103001, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19792300

ABSTRACT

We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped (88)Sr(+) ion in the resolved-sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling between the ion and the cavity, are consistent with a simple model [Phys. Rev. A 64, 033405 (2001)] without any free parameters, validating the rate equation model for cavity cooling.

13.
Phys Rev Lett ; 101(18): 180602, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18999810

ABSTRACT

Electric field noise from fluctuating patch potentials is a significant problem for a broad range of precision experiments, including trapped ion quantum computation and single spin detection. Recent results demonstrated strong suppression of this noise by cryogenic cooling, suggesting an underlying thermal process. We present measurements characterizing the temperature and frequency dependence of the noise from 7 to 100 K, using a single Sr+ ion trapped 75 mum above the surface of a gold plated surface electrode ion trap. The noise amplitude is observed to have an approximate 1/f spectrum around 1 MHz, and grows rapidly with temperature as T;{beta} for beta from 2 to 4. The data are consistent with microfabricated cantilever measurements of noncontact friction but do not extrapolate to the dc measurements with neutral atoms or contact potential probes.

14.
Phys Rev Lett ; 100(1): 013001, 2008 Jan 11.
Article in English | MEDLINE | ID: mdl-18232755

ABSTRACT

Dense arrays of trapped ions provide one way of scaling up ion trap quantum information processing. However, miniaturization of ion traps is currently limited by sharply increasing motional state decoherence at sub-100 mum ion-electrode distances. We characterize heating rates in cryogenically cooled surface-electrode traps, with characteristic sizes in the 75 to 150 mum range. Upon cooling to 6 K, the measured rates are suppressed by 7 orders of magnitude, 2 orders of magnitude below previously published data of similarly sized traps operated at room temperature. The observed noise depends strongly on the fabrication process, which suggests further improvements are possible.

SELECTION OF CITATIONS
SEARCH DETAIL
...