Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7451, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978186

ABSTRACT

Polar ecosystems are experiencing amongst the most rapid rates of regional warming on Earth. Here, we discuss 'omics' approaches to investigate polar biodiversity, including the current state of the art, future perspectives and recommendations. We propose a community road map to generate and more fully exploit multi-omics data from polar organisms. These data are needed for the comprehensive evaluation of polar biodiversity and to reveal how life evolved and adapted to permanently cold environments with extreme seasonality. We argue that concerted action is required to mitigate the impact of warming on polar ecosystems via conservation efforts, to sustainably manage these unique habitats and their ecosystem services, and for the sustainable bioprospecting of novel genes and compounds for societal gain.


Subject(s)
Ecosystem , Multiomics , Biodiversity , Forecasting
2.
J Mech Behav Biomed Mater ; 113: 104109, 2021 01.
Article in English | MEDLINE | ID: mdl-33080565

ABSTRACT

In this contribution we create three-dimensional (3D) finite element models from a series of histological sections of porcine skeletal muscle tissue. Image registration is performed on the stained sections by affinely aligning them using auxiliary markers, followed by image segmentation to determine muscle fibres and the extracellular matrix in each section, with particular regard to the continuity of the fibres through the stack. With this information, 3D virtual tissue samples are reconstructed, discretised, and associated with appropriate non-linear elastic anisotropic material models. While the gross anatomy is directly obtained from the images, the local directions of anisotropy were determined by the use of an analogy with steady state diffusion. The influence of the number of histological sections considered for reconstruction on the numerically simulated mechanical response of the virtual tissue samples is then studied. The results show that muscle tissue is fairly heterogeneous along the fascicles, and that transverse isotropy is inadequate in describing their material symmetry at the typical length scale of a fascicle. Numerical simulations of different load cases suggest that ignoring the undulations of fibres and their non-uniform cross-sections only moderately affects the passive response of the tissue in tensile and compressive modes, but can become crucial when predicting the response to generic loads and activation.


Subject(s)
Muscle Fibers, Skeletal , Muscle, Skeletal , Animals , Anisotropy , Finite Element Analysis , Models, Biological , Pressure , Stress, Mechanical , Swine
SELECTION OF CITATIONS
SEARCH DETAIL