Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Microbiol Spectr ; 12(5): e0425522, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38587411

ABSTRACT

tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker's yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.


Subject(s)
Candida albicans , Candidiasis , Fungal Proteins , Hyphae , RNA, Transfer , Candida albicans/genetics , Candida albicans/pathogenicity , Candida albicans/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Virulence/genetics , Humans , Fungal Proteins/genetics , Fungal Proteins/metabolism , Candidiasis/microbiology , Hyphae/growth & development , Hyphae/genetics , Hyphae/metabolism , Animals , Candida/pathogenicity , Candida/genetics , Candida/metabolism , Host-Pathogen Interactions , Mice , Epithelial Cells/microbiology
2.
Nucleic Acids Res ; 52(7): 4021-4036, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38324474

ABSTRACT

Ribosome-enhanced translational miscoding of the genetic code causes protein dysfunction and loss of cellular fitness. During evolution, open reading frame length increased, necessitating mechanisms for enhanced translation fidelity. Indeed, eukaryal ribosomes are more accurate than bacterial counterparts, despite their virtually identical, conserved active centers. During the evolution of eukaryotic organisms ribosome expansions at the rRNA and protein level occurred, which potentially increases the options for translation regulation and cotranslational events. Here we tested the hypothesis that ribosomal RNA expansions can modulate the core function of the ribosome, faithful protein synthesis. We demonstrate that a short expansion segment present in all eukaryotes' small subunit, ES7S, is crucial for accurate protein synthesis as its presence adjusts codon-specific velocities and guarantees high levels of cognate tRNA selection. Deletion of ES7S in yeast enhances mistranslation and causes protein destabilization and aggregation, dramatically reducing cellular fitness. Removal of ES7S did not alter ribosome architecture but altered the structural dynamics of inter-subunit bridges thus affecting A-tRNA selection. Exchanging the yeast ES7S sequence with the human ES7S increases accuracy whereas shortening causes the opposite effect. Our study demonstrates that ES7S provided eukaryal ribosomes with higher accuracy without perturbing the structurally conserved decoding center.


Subject(s)
Protein Biosynthesis , RNA, Ribosomal , Ribosomes , Saccharomyces cerevisiae , Protein Biosynthesis/genetics , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Ribosomes/metabolism , Ribosomes/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Transfer/metabolism , RNA, Transfer/genetics , Codon/genetics
3.
ACS Chem Biol ; 18(12): 2441-2449, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37962075

ABSTRACT

The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.


Subject(s)
Nucleic Acids , RNA , Epigenesis, Genetic , Biology
4.
Nucleic Acids Res ; 51(15): 8133-8149, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37462076

ABSTRACT

Fungal pathogens threaten ecosystems and human health. Understanding the molecular basis of their virulence is key to develop new treatment strategies. Here, we characterize NCS2*, a point mutation identified in a clinical baker's yeast isolate. Ncs2 is essential for 2-thiolation of tRNA and the NCS2* mutation leads to increased thiolation at body temperature. NCS2* yeast exhibits enhanced fitness when grown at elevated temperatures or when exposed to oxidative stress, inhibition of nutrient signalling, and cell-wall stress. Importantly, Ncs2* alters the interaction and stability of the thiolase complex likely mediated by nucleotide binding. The absence of 2-thiolation abrogates the in vivo virulence of pathogenic baker's yeast in infected mice. Finally, hypomodification triggers changes in colony morphology and hyphae formation in the common commensal pathogen Candida albicans resulting in decreased virulence in a human cell culture model. These findings demonstrate that 2-thiolation of tRNA acts as a key mediator of fungal virulence and reveal new mechanistic insights into the function of the highly conserved tRNA-thiolase complex.


Subject(s)
RNA, Transfer , Saccharomyces cerevisiae , Animals , Humans , Mice , Candida albicans/metabolism , Ecosystem , Fungal Proteins/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/pathogenicity , Sulfur/metabolism , Virulence/genetics
5.
Nucleic Acids Res ; 51(13): e68, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37246712

ABSTRACT

Ribosome profiling provides quantitative, comprehensive, and high-resolution snapshots of cellular translation by the high-throughput sequencing of short mRNA fragments that are protected by ribosomes from nucleolytic digestion. While the overall principle is simple, the workflow of ribosome profiling experiments is complex and challenging, and typically requires large amounts of sample, limiting its broad applicability. Here, we present a new protocol for ultra-rapid ribosome profiling from low-input samples. It features a robust strategy for sequencing library preparation within one day that employs solid phase purification of reaction intermediates, allowing to reduce the input to as little as 0.1 pmol of ∼30 nt RNA fragments. Hence, it is particularly suited for the analyses of small samples or targeted ribosome profiling. Its high sensitivity and its ease of implementation will foster the generation of higher quality data from small samples, which opens new opportunities in applying ribosome profiling.


Subject(s)
Ribosome Profiling , High-Throughput Nucleotide Sequencing/methods , Protein Biosynthesis , Ribosome Profiling/methods , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Nat Commun ; 14(1): 787, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774438

ABSTRACT

During influenza A virus (IAV) infections, viral proteins are targeted by cellular E3 ligases for modification with ubiquitin. Here, we decipher and functionally explore the ubiquitination landscape of the IAV polymerase proteins during infection of human alveolar epithelial cells by applying mass spectrometry analysis of immuno-purified K-ε-GG (di-glycyl)-remnant-bearing peptides. We have identified 59 modified lysines across the three subunits, PB2, PB1 and PA of the viral polymerase of which 17 distinctively affect mRNA transcription, vRNA replication and the generation of recombinant viruses via non-proteolytic mechanisms. Moreover, further functional and in silico analysis indicate that ubiquitination at K578 in the PB1 thumb domain is mechanistically linked to dynamic structural transitions of the viral polymerase that are required for vRNA replication. Mutations K578A and K578R differentially affect the generation of recombinant viruses by impeding cRNA and vRNA synthesis, NP binding as well as polymerase dimerization. Collectively, our results demonstrate that the ubiquitin-mediated charge neutralization at PB1-K578 disrupts the interaction to an unstructured loop in the PB2 N-terminus that is required to coordinate polymerase dimerization and facilitate vRNA replication. This provides evidence that IAV exploits the cellular ubiquitin system to modulate the activity of the viral polymerase for viral replication.


Subject(s)
Influenza A virus , Influenza, Human , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Viral Proteins/metabolism , Transcription, Genetic , Nucleotidyltransferases/metabolism , Virus Replication , Ubiquitination , Ubiquitins/metabolism , RNA, Viral/genetics
7.
Front Microbiol ; 13: 1042675, 2022.
Article in English | MEDLINE | ID: mdl-36532460

ABSTRACT

Introduction: The response of enterobacteria to oxidative stress is usually considered to be regulated by transcription factors such as OxyR and SoxR. Nevertheless, several reports have shown that under oxidative stress the levels, modification and aminoacylation of tRNAs may be altered suggesting a role of codon bias in regulation of gene expression under this condition. Methods: In order to characterize the effects of oxidative stress on translation elongation we constructed a library of 61 plasmids, each coding for the green fluorescent protein (GFP) translationally fused to a different set of four identical codons. Results: Using these reporters, we observed that GFP production levels vary widely (~15 fold) when Escherichia coli K-12 is cultured in minimal media as a consequence of codon choice variations. When bacteria are cultured under oxidative stress caused by paraquat the levels of GFP produced by most clones is reduced and, in contrast to control conditions, the range of GFP levels is restricted to a ~2 fold range. Restricting elongation of particular sequences does not increase the range of GFP production under oxidative stress, but altering translation initiation rates leads to an increase in this range. Discussion: Altogether, our results suggest that under normal conditions the speed of translation elongation is in the range of the speed of initiation and, consequently, codon choice impacts the speed of protein synthesis. In contrast, under oxidative stress translation initiation becomes much slower than elongation, limiting the speed of translation such that codon choice has at most only subtle effects on the overall output of translation.

8.
EMBO J ; 41(20): e111318, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36102610

ABSTRACT

Post-translational modifications by ubiquitin-like proteins (UBLs) are essential for nearly all cellular processes. Ubiquitin-related modifier 1 (Urm1) is a unique UBL, which plays a key role in tRNA anticodon thiolation as a sulfur carrier protein (SCP) and is linked to the noncanonical E1 enzyme Uba4 (ubiquitin-like protein activator 4). While Urm1 has also been observed to conjugate to target proteins like other UBLs, the molecular mechanism of its attachment remains unknown. Here, we reconstitute the covalent attachment of thiocarboxylated Urm1 to various cellular target proteins in vitro, revealing that, unlike other known UBLs, this process is E2/E3-independent and requires oxidative stress. Furthermore, we present the crystal structures of the peroxiredoxin Ahp1 before and after the covalent attachment of Urm1. Surprisingly, we show that urmylation is accompanied by the transfer of sulfur to cysteine residues in the target proteins, also known as cysteine persulfidation. Our results illustrate the role of the Uba4-Urm1 system as a key evolutionary link between prokaryotic SCPs and the UBL modifications observed in modern eukaryotes.


Subject(s)
Ubiquitin , Ubiquitins , Anticodon , Carrier Proteins/metabolism , Cysteine , Peroxiredoxins , Sulfur/metabolism , Ubiquitin/metabolism , Ubiquitins/metabolism
10.
Methods Enzymol ; 658: 191-223, 2021.
Article in English | MEDLINE | ID: mdl-34517947

ABSTRACT

Chemical modifications of RNA molecules can affect translation in multiple ways. Therefore, it is critical to understand how their absence changes cellular translation dynamics and in particular codon-specific translation. In this chapter, we discuss the application of ribosome profiling to analyze changes in codon-specific translation and differential translation in Saccharomyces cerevisiae and human cells.


Subject(s)
Protein Biosynthesis , RNA, Transfer , Codon/genetics , Codon/metabolism , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribosomes/genetics , Ribosomes/metabolism
11.
Nat Commun ; 12(1): 5094, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429433

ABSTRACT

Ribosome profiling measures genome-wide translation dynamics at sub-codon resolution. Cycloheximide (CHX), a widely used translation inhibitor to arrest ribosomes in these experiments, has been shown to induce biases in yeast, questioning its use. However, whether such biases are present in datasets of other organisms including humans is unknown. Here we compare different CHX-treatment conditions in human cells and yeast in parallel experiments using an optimized protocol. We find that human ribosomes are not susceptible to conformational restrictions by CHX, nor does it distort gene-level measurements of ribosome occupancy, measured decoding speed or the translational ramp. Furthermore, CHX-induced codon-specific biases on ribosome occupancy are not detectable in human cells or other model organisms. This shows that reported biases of CHX are species-specific and that CHX does not affect the outcome of ribosome profiling experiments in most settings. Our findings provide a solid framework to conduct and analyze ribosome profiling experiments.


Subject(s)
Cycloheximide/pharmacology , Ribosomes/chemistry , Ribosomes/drug effects , Ribosomes/metabolism , Animals , Bias , Codon/metabolism , HEK293 Cells , Humans , Mice , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Saccharomyces cerevisiae/metabolism , Species Specificity
12.
Genes (Basel) ; 12(3)2021 03 11.
Article in English | MEDLINE | ID: mdl-33799543

ABSTRACT

SMITER (Synthetic mzML writer) is a Python-based command-line tool designed to simulate liquid-chromatography-coupled tandem mass spectrometry LC-MS/MS runs. It enables the simulation of any biomolecule amenable to mass spectrometry (MS) since all calculations are based on chemical formulas. SMITER features a modular design, allowing for an easy implementation of different noise and fragmentation models. By default, SMITER uses an established noise model and offers several methods for peptide fragmentation, and two models for nucleoside fragmentation and one for lipid fragmentation. Due to the rich Python ecosystem, other modules, e.g., for retention time (RT) prediction, can easily be implemented for the tailored simulation of any molecule of choice. This facilitates the generation of defined gold-standard LC-MS/MS datasets for any type of experiment. Such gold standards, where the ground truth is known, are required in computational mass spectrometry to test new algorithms and to improve parameters of existing ones. Similarly, gold-standard datasets can be used to evaluate analytical challenges, e.g., by predicting co-elution and co-fragmentation of molecules. As these challenges hinder the detection or quantification of co-eluents, a comprehensive simulation can identify and thus, prevent such difficulties before performing actual MS experiments. SMITER allows the creation of such datasets easily, fast, and efficiently.


Subject(s)
Algorithms , Nucleosides , Programming Languages , Tandem Mass Spectrometry , Chromatography, Liquid
13.
Nucleic Acids Res ; 49(6): 3185-3203, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33693809

ABSTRACT

Protein methylation occurs primarily on lysine and arginine, but also on some other residues, such as histidine. METTL18 is the last uncharacterized member of a group of human methyltransferases (MTases) that mainly exert lysine methylation, and here we set out to elucidate its function. We found METTL18 to be a nuclear protein that contains a functional nuclear localization signal and accumulates in nucleoli. Recombinant METTL18 methylated a single protein in nuclear extracts and in isolated ribosomes from METTL18 knockout (KO) cells, identified as 60S ribosomal protein L3 (RPL3). We also performed an RPL3 interactomics screen and identified METTL18 as the most significantly enriched MTase. We found that His-245 in RPL3 carries a 3-methylhistidine (3MH; τ-methylhistidine) modification, which was absent in METTL18 KO cells. In addition, both recombinant and endogenous METTL18 were found to be automethylated at His-154, thus further corroborating METTL18 as a histidine-specific MTase. Finally, METTL18 KO cells displayed altered pre-rRNA processing, decreased polysome formation and codon-specific changes in mRNA translation, indicating that METTL18-mediated methylation of RPL3 is important for optimal ribosome biogenesis and function. In conclusion, we have here established METTL18 as the second human histidine-specific protein MTase, and demonstrated its functional relevance.


Subject(s)
Protein Biosynthesis , Protein Methyltransferases/metabolism , RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism , Amino Acid Motifs , Cell Nucleolus/enzymology , HEK293 Cells , HeLa Cells , Histidine/metabolism , Humans , Nuclear Localization Signals , Protein Methyltransferases/chemistry , RNA Processing, Post-Transcriptional , Ribosomal Protein L3 , Ribosomes/metabolism
14.
Biomolecules ; 11(2)2021 01 22.
Article in English | MEDLINE | ID: mdl-33499055

ABSTRACT

Urm1 (ubiquitin related modifier 1) is a molecular fossil in the class of ubiquitin-like proteins (UBLs). It encompasses characteristics of classical UBLs, such as ubiquitin or SUMO (small ubiquitin-related modifier), but also of bacterial sulfur-carrier proteins (SCP). Since its main function is to modify tRNA, Urm1 acts in a non-canonical manner. Uba4, the activating enzyme of Urm1, contains two domains: a classical E1-like domain (AD), which activates Urm1, and a rhodanese homology domain (RHD). This sulfurtransferase domain catalyzes the formation of a C-terminal thiocarboxylate on Urm1. Thiocarboxylated Urm1 is the sulfur donor for 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), a chemical nucleotide modification at the wobble position in tRNA. This thio-modification is conserved in all domains of life and optimizes translation. The absence of Urm1 increases stress sensitivity in yeast triggered by defects in protein homeostasis, a hallmark of neurological defects in higher organisms. In contrast, elevated levels of tRNA modifying enzymes promote the appearance of certain types of cancer and the formation of metastasis. Here, we summarize recent findings on the unique features that place Urm1 at the intersection of UBL and SCP and make Urm1 an excellent model for studying the evolution of protein conjugation and sulfur-carrier systems.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Small Ubiquitin-Related Modifier Proteins/chemistry , Gene Expression Regulation, Fungal , Genes, Fungal , Homeostasis , Phenotype , RNA, Transfer/metabolism , Stress, Physiological , Sulfurtransferases/genetics , Thiosulfate Sulfurtransferase/chemistry , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitins/metabolism
15.
J Proteome Res ; 20(4): 1986-1996, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33514075

ABSTRACT

The identification of peptide sequences and their post-translational modifications (PTMs) is a crucial step in the analysis of bottom-up proteomics data. The recent development of open modification search (OMS) engines allows virtually all PTMs to be searched for. This not only increases the number of spectra that can be matched to peptides but also greatly advances the understanding of the biological roles of PTMs through the identification, and the thereby facilitated quantification, of peptidoforms (peptide sequences and their potential PTMs). Whereas the benefits of combining results from multiple protein database search engines have been previously established, similar approaches for OMS results have been missing so far. Here we compare and combine results from three different OMS engines, demonstrating an increase in peptide spectrum matches of 8-18%. The unification of search results furthermore allows for the combined downstream processing of search results, including the mapping to potential PTMs. Finally, we test for the ability of OMS engines to identify glycosylated peptides. The implementation of these engines in the Python framework Ursgal facilitates the straightforward application of the OMS with unified parameters and results files, thereby enabling yet unmatched high-throughput, large-scale data analysis.


Subject(s)
Algorithms , Software , Databases, Protein , Protein Processing, Post-Translational , Proteomics , Search Engine
16.
Front Genet ; 11: 616946, 2020.
Article in English | MEDLINE | ID: mdl-33329755
17.
Elife ; 92020 11 03.
Article in English | MEDLINE | ID: mdl-33138918

ABSTRACT

Three-dimensional (3D) culture systems have fueled hopes to bring about the next generation of more physiologically relevant high-throughput screens (HTS). However, current protocols yield either complex but highly heterogeneous aggregates ('organoids') or 3D structures with less physiological relevance ('spheroids'). Here, we present a scalable, HTS-compatible workflow for the automated generation, maintenance, and optical analysis of human midbrain organoids in standard 96-well-plates. The resulting organoids possess a highly homogeneous morphology, size, global gene expression, cellular composition, and structure. They present significant features of the human midbrain and display spontaneous aggregate-wide synchronized neural activity. By automating the entire workflow from generation to analysis, we enhance the intra- and inter-batch reproducibility as demonstrated via RNA sequencing and quantitative whole mount high-content imaging. This allows assessing drug effects at the single-cell level within a complex 3D cell environment in a fully automated HTS workflow.


In 1907, the American zoologist Ross Granville Harrison developed the first technique to artificially grow animal cells outside the body in a liquid medium. Cells are still grown in much the same way in modern laboratories: a single layer of cells is placed in a warm incubator with nutrient-rich broth. These cell layers are often used to test new drugs, but they cannot recapitulate the complexity of a real organ made from multiple cell types within a living, breathing human body. Growing three-dimensional miniature organs or 'organoids' that behave in a similar way to real organs is the next step towards creating better platforms for drug screening, but there are several difficulties inherent to this process. For one thing, it is hard to recreate the multitude of cell types that make up an organ. For another, the cells that do grow often fail to connect and communicate with each other in biologically realistic ways. It is also tough to grow a large number of organoids that all behave in the same way, making it hard to know whether a particular drug works or whether it is just being tested on a 'good' organoid. Renner et al. have been able to overcome these issues by using robotic technology to create thousands of identical, mid-brain organoids from human cells in the lab. The robots perform a series of precisely controlled tasks ­ including dispensing the initial cells into wells, feeding organoids as they grow and testing them at different stages of development. These mini-brains, which are the size of the head of a pin, mimic the part of the brain where Parkinson's disease first manifests. They can be used to test new drugs for Parkinson's, and to better understand the biology of the brain. Perhaps more importantly, other types of organoids can be created using the same technique to model diseases that affect other areas of the brain, or other organs altogether. For example, Renner et al. also generated forebrain organoids using an automated approach for both generation and analysis. This research, which shows that organoids can be grown and tested in a fully automated, reproducible and scalable way, creates a platform to quickly, cheaply and easily test thousands of drugs for Parkinson's and other difficult-to-treat diseases in a human setting. This approach has the potential to reduce research waste by increasing the chances that a drug that works in the lab will also ultimately work in a patient; and reduce animal experiments, as drugs that do not work in human tissues will not proceed to animal testing.


Subject(s)
Mesencephalon/cytology , Organoids/cytology , Workflow , Automation , Calcium/metabolism , Cell Lineage , Dopamine/metabolism , Humans , Imaging, Three-Dimensional , Mesencephalon/physiology , Organoids/drug effects , Patch-Clamp Techniques , Pluripotent Stem Cells/cytology , Reproducibility of Results , Sequence Analysis, RNA
18.
Front Genet ; 11: 856, 2020.
Article in English | MEDLINE | ID: mdl-33014012

ABSTRACT

Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria modulate the response to oxidative stress according to the prevailing metabolic state of the cells.

19.
Nat Commun ; 11(1): 5499, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33127892

ABSTRACT

The epiblast, which provides the foundation of the future body, is actively reshaped during early embryogenesis, but the reshaping mechanisms are poorly understood. Here, using a 3D in vitro model of early epiblast development, we identify the canonical Wnt/ß-catenin pathway and its central downstream factor Esrrb as the key signalling cascade regulating the tissue-scale organization of the murine pluripotent lineage. Although in vivo the Wnt/ß-catenin/Esrrb circuit is dispensable for embryonic development before implantation, autocrine Wnt activity controls the morphogenesis and long-term maintenance of the epiblast when development is put on hold during diapause. During this phase, the progressive changes in the epiblast architecture and Wnt signalling response show that diapause is not a stasis but instead is a dynamic process with underlying mechanisms that can appear redundant during transient embryogenesis.


Subject(s)
Diapause/physiology , Embryonic Stem Cells/metabolism , Receptors, Estrogen/metabolism , Wnt Signaling Pathway/physiology , Animals , Embryonic Development , Female , Germ Layers/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Morphogenesis , Protein Serine-Threonine Kinases/metabolism , Receptors, Estrogen/genetics , beta Catenin/genetics
20.
EMBO J ; 39(19): e105087, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32901956

ABSTRACT

The chemical modification of tRNA bases by sulfur is crucial to tune translation and to optimize protein synthesis. In eukaryotes, the ubiquitin-related modifier 1 (Urm1) pathway is responsible for the synthesis of 2-thiolated wobble uridine (U34 ). During the key step of the modification cascade, the E1-like activating enzyme ubiquitin-like protein activator 4 (Uba4) first adenylates and thiocarboxylates the C-terminus of its substrate Urm1. Subsequently, activated thiocarboxylated Urm1 (Urm1-COSH) can serve as a sulfur donor for specific tRNA thiolases or participate in ubiquitin-like conjugation reactions. Structural and mechanistic details of Uba4 and Urm1 have remained elusive but are key to understand the evolutionary branch point between ubiquitin-like proteins (UBL) and sulfur-relay systems. Here, we report the crystal structures of full-length Uba4 and its heterodimeric complex with its substrate Urm1. We show how the two domains of Uba4 orchestrate recognition, binding, and thiocarboxylation of the C-terminus of Urm1. Finally, we uncover how the catalytic domains of Uba4 communicate efficiently during the reaction cycle and identify a mechanism that enables Uba4 to protect itself against self-conjugation with its own product, namely activated Urm1-COSH.


Subject(s)
Nucleotidyltransferases/chemistry , RNA, Transfer/chemistry , Sulfur/chemistry , Sulfurtransferases/chemistry , Ubiquitins/chemistry , Humans , Nucleotidyltransferases/metabolism , RNA, Transfer/metabolism , Sulfur/metabolism , Sulfurtransferases/metabolism , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...