Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 25(5)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120989

ABSTRACT

Protonated rare gas clusters have previously been shown to display markably different structures than their pure, cationic counterparts. Here we have performed high resolution mass spectrometry measurements of protonated and pristine clusters of He containing up to 50 atoms. We identify notable differences between the magic numbers present in the two types of clusters, but in contrast to heavier rare gas clusters, neither the protonated nor pure clusters exhibit signs of icosahedral symmetries. These findings are discussed in light of results from heavier rare gases and previous theoretical work on protonated helium.


Subject(s)
Cations/chemistry , Helium/chemistry , Mass Spectrometry , Protons
2.
Phys Chem Chem Phys ; 20(40): 25569-25576, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30112553

ABSTRACT

We report on a combined experimental and theoretical study of Li+ ions solvated by up to 50 He atoms. The experiments show clear enhanced abundances associated with HenLi+ clusters where n = 2, 6, 8, and 14. We find that classical methods, e.g. basin-hopping (BH), give results that qualitatively agree with quantum mechanical methods such as path integral Monte Carlo, diffusion Monte Carlo and quantum free energy, regarding both energies and the solvation structures that are formed. The theory identifies particularly stable structures for n = 4, 6 and 8 which line up with some of the most abundant features in the experiments.

3.
J Phys Chem A ; 118(37): 8050-9, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-24128371

ABSTRACT

Helium nanodroplets doped with argon, krypton, or xenon are ionized by electrons and analyzed in a mass spectrometer. HenNgx(+) ions containing up to seven noble gas (Ng) atoms and dozens of helium atoms are identified; the high resolution of the mass spectrometer combined with advanced data analysis make it possible to unscramble contributions from isotopologues that have the same nominal mass but different numbers of helium or Ng atoms, such as the magic He20(84)Kr2(+) and the isobaric, nonmagic He41(84)Kr(+). Anomalies in these ion abundances reveal particularly stable ions; several intriguing patterns emerge. Perhaps most astounding are the results for HenAr(+), which show evidence for three distinct, solid-like solvation shells containing 12, 20, and 12 helium atoms. This observation runs counter to the common notion that only the first solvation shell is solid-like but agrees with calculations by Galli et al. for HenNa(+) [J. Phys. Chem. A 2011, 115, 7300] that reveal three shells of icosahedral symmetry. HenArx(+) (2 ≤ x ≤ 7) ions appear to be especially stable if they contain a total of n + x = 19 atoms. A sequence of anomalies in the abundance distribution of HenKrx(+) suggests that rings of six helium atoms are inserted into the solvation shell each time a krypton atom is added to the ionic core, from Kr(+) to Kr3(+). Previously reported strong anomalies at He12Kr2(+) and He12Kr3(+) [Kim , J. H.; et al. J. Chem. Phys. 2006, 124, 214301] are attributed to a contamination. Only minor local anomalies appear in the distributions of HenXex(+) (x ≤ 3). The distributions of HenKr(+) and HenXe(+) show strikingly similar, broad features that are absent from the distribution of HenAr(+); differences are tentatively ascribed to the very different fragmentation dynamics of these ions.

4.
ChemSusChem ; 6(7): 1235-44, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23744834

ABSTRACT

Methane adsorption on positively charged aggregates of C60 is investigated by both mass spectrometry and computer simulations. Calculated adsorption energies of 118-281 meV are in the optimal range for high-density storage of natural gas. Groove sites, dimple sites, and the first complete adsorption shells are identified experimentally and confirmed by molecular dynamics simulations, using a newly developed force field for methane-methane and fullerene-methane interaction. The effects of corrugation and curvature are discussed and compared with data for adsorption on graphite, graphene, and carbon nanotubes.


Subject(s)
Fullerenes/chemistry , Methane/chemistry , Adsorption , Molecular Conformation , Molecular Dynamics Simulation
5.
Chemphyschem ; 14(1): 227-32, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23090688

ABSTRACT

High-resolution mass spectra of helium nanodroplets doped with hydrogen or deuterium reveal that copious amounts of helium can be bound to H(+), H(2)(+), H(3)(+), and larger hydrogen-cluster ions. All conceivable He(n)H(x)(+) stoichiometries are identified if their mass is below the limit of ≈120 u set by the resolution of the spectrometer. Anomalies in the ion yields of He(n)H(x)(+) for x=1, 2, or 3, and n≤30 reveal particularly stable cluster ions. Our results for He(n)H(1)(+) are consistent with conclusions drawn from previous experimental and theoretical studies which were limited to smaller cluster ions. The He(n)H(3)(+) series exhibits a pronounced anomaly at n=12 which was outside the reliable range of earlier experiments. Contrary to findings reported for other diatomic dopant molecules, the monomer ion (i.e. H(2)(+)) retains helium with much greater efficiency than hydrogen-cluster ions.

6.
Phys Rev Lett ; 108(7): 076101, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22401228

ABSTRACT

Helium adsorbed on C(60)(+) and C(70)(+) exhibits phenomena akin to helium on graphite. Mass spectra suggest that commensurate layers form when all carbon hexagons and pentagons are occupied by one He each, but that the solvation shell does not close until 60 He atoms are adsorbed on C(60)(+), or 62 on C(70)(+). Molecular dynamics simulations of C(60)He(n)(+) at 4 K show that the commensurate phase is solid. Helium added to C(60)He(32)(+) will displace some atoms from pentagonal sites, leading to coexistence of a registered layer of immobile atoms interlaced with a nonregistered layer of mobile atoms.

7.
Chemistry ; 18(14): 4411-8, 2012 Apr 02.
Article in English | MEDLINE | ID: mdl-22374575

ABSTRACT

Helium atoms bind strongly to alkali cations which, when embedded in liquid helium, form so-called snowballs. Calculations suggest that helium atoms in the first solvation layer of these snowballs form rigid structures and that their number (n) is well defined, especially for the lighter alkalis. However, experiments have so far failed to accurately determine values of n. We present high-resolution mass spectra of Na(+)He(n), K(+)He(n), Na(2)(+)He(n) and K(2)(+)He(n), formed by electron ionization of doped helium droplets; the data allow for a critical comparison with several theoretical studies. For sodium and potassium monomers the spectra indicate that the value of n is slightly smaller than calculated. Na(2)(+)He(n) displays two distinct anomalies at n=2 and n=6, in agreement with theory; dissociation energies derived from experiment closely track theoretical values. K(2)(+)He(n) distributions are fairly featureless, which also agrees with predictions.

8.
J Phys Chem Lett ; 3(18): 2598-2603, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-23378887

ABSTRACT

Bundles of single-walled nanotubes are promising candidates for storage of hydrogen, methane, and other hydrogen-rich molecules, but experiments are hindered by nonuniformity of the tubes. We overcome the problem by investigating methane adsorption on aggregates of fullerenes containing up to six C(60); the systems feature adsorption sites similar to those of nanotube bundles. Four different types of adsorption sites are distinguished, namely, registered sites above the carbon hexagons and pentagons, groove sites between adjacent fullerenes, dimple sites between three adjacent fullerenes, and exterior sites. The nature and adsorption energies of the sites in C(60) aggregates are determined by density functional theory and molecular dynamics (MD) simulations. Excellent agreement between experiment and theory is obtained for the adsorption capacity in these sites.

9.
Chemphyschem ; 13(2): 469-76, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22162091

ABSTRACT

The electron ionization of helium droplets doped with methane clusters is investigated for the first time using high-resolution mass spectrometry. The dominant ion products ejected into the gas phase are the unprotonated (CH(4))(n)(+) cluster ions along with the protonated ions, CH(5)(+)(CH(4))(n-1). The mass spectra show clear evidence for magic numbers, which are broadly consistent with icosahedral shell closings. However, unusual features were observed, including different magic numbers for CH(5)(+)(CH(4))(n-1) (n=55, 148) when compared to (CH(4))(n)(+) (n=54, 147). Possible interpretations for some of these differences are proposed. Products of the type [C(2)H(x)(CH(4))(n)](+), which result from ion-molecule chemistry, are also observed and these too show clear magic number features. Finally, we report the first observation of (CH(4))(n)(2+) dications from methane clusters. The threshold for dication survival occurs at n≥70 and is in good agreement with a liquid droplet model for fission of multiply charged ions. Furthermore, we present evidence showing that these dications are formed by an unusual two-step mechanism which is initiated by charge transfer to generate a monocation and is then followed by Penning ionization to generate a dication.

10.
J Chem Phys ; 135(4): 044309, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21806121

ABSTRACT

The submersion of sodium clusters beyond a critical size in helium nanodroplets, which has recently been predicted on theoretical grounds, is demonstrated for the first time. Confirmation of a clear transition from a surface location, which occurs for alkali atoms and small clusters, to full immersion for larger clusters, is provided by identifying the threshold electron energy required to initiate Na(n) cluster ionization. On the basis of these measurements, a lower limit for the cluster size required for submersion, n ≥ 21, has been determined. This finding is consistent with the recent theoretical prediction.

11.
Phys Chem Chem Phys ; 13(3): 1092-8, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21072422

ABSTRACT

Helium nanodroplets are co-doped with C(60) and ammonia. Mass spectra obtained by electron ionization reveal cations containing ammonia clusters complexed with up to four C(60) units. The high mass resolution of Δm/m≈ 1/6000 makes it possible to separate the contributions of protonated, unprotonated and dehydrogenated ammonia. C(60) aggregates suppress the proton-transfer reaction which usually favors the appearance of protonated ammonia cluster ions. Unprotonated C(x)(NH(3))(n)(+) ions (x = 60, 120, 180) exceed the abundance of the corresponding protonated ions if n < 5; for larger values of n the abundances of C(60)(NH(3))(n)(+) and C(60)(NH)(n-1)NH(4)(+) become about equal. Dehydrogenated C(60)NH(2)(+) ions are relatively abundant; their formation is attributed to a transient doubly charged C(60)-ammonia complex which forms either by an Auger process or by Penning ionization following charge transfer between the primary He(+) ion and C(60). The abundance of C(x)NH(3)(+) and C(x)NH(4)(+) ions (x = 120 or 180) is one to two orders of magnitude weaker than the abundance of ions containing one or two additional ammonia molecules. However, a model involving evaporation of NH(3) or NH(4) from the presumably weakly bound C(x)NH(3)(+) and C(x)NH(4)(+) ions is at odds with the lack of enhancement in the abundance of C(120)(+) and C(180)(+). Mass spectra of C(60) dimers complexed with water complement a previous study of C(60)(H(2)O)(n)(+) recorded at much lower mass resolution.


Subject(s)
Ammonia/chemistry , Fullerenes/chemistry , Helium/chemistry , Ions/chemistry , Mass Spectrometry , Nanoparticles/chemistry , Protons , Water/chemistry
12.
Phys Rev Lett ; 105(24): 243402, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21231525

ABSTRACT

We report the observation of the ejection of electrons caused by collisions of excited atoms with ions, rather than neutrals, leading to the production of doubly charged ions. Doping superfluid He droplets with methyl iodide and exposing them to electrons enhances the formation of doubly charged iodine atoms at the threshold for the production of two metastable He atoms. These observations point toward a novel ionization process where doubly charged ions are produced by sequential Penning ionization. In some cases, depending on the neutral target, the process also leads to a subsequent Coulomb explosion of the dopant.

SELECTION OF CITATIONS
SEARCH DETAIL
...