Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Kidney Med ; 5(11): 100723, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37915961

ABSTRACT

Rationale & Objective: Heart failure (HF) is an important cause of morbidity and mortality among individuals with chronic kidney disease (CKD). A large body of evidence from preclinical and clinical studies implicates excess levels of fibroblast growth factor 23 (FGF23) in HF pathogenesis in CKD. It remains unclear whether the relationship between elevated FGF23 levels and HF risk among individuals with CKD varies by HF subtype. Study Design: Prospective cohort study. Settings & Participants: A total of 3,502 participants were selected in the Chronic Renal Insufficiency Cohort study. Exposure: Baseline plasma FGF23. Outcomes: Incident HF by subtype and total rate of HF hospitalization. HF was categorized as HF with preserved ejection fraction (HFpEF, ejection fraction [EF] ≥ 50%), HF with reduced EF (HFrEF, EF < 50%) and HF with unknown EF (HFuEF). Analytical Approach: Multivariable-adjusted cause-specific Cox proportional hazards models were used to investigate associations between FGF23 and incident hospitalizations for HF by subtype. The Lunn-McNeil method was used to compare hazard ratios across HF subtypes. Poisson regression models were used to evaluate the total rate of HF. Results: During a median follow-up time of 10.8 years, 295 HFpEF, 242 HFrEF, and 156 HFuEF hospitalizations occurred. In multivariable-adjusted cause-specific Cox proportional hazards models, FGF23 was significantly associated with the incidence of HFpEF (HR, 1.41; 95% CI, 1.21-1.64), HFrEF (HR, 1.27; 95% CI, 1.05-1.53), and HFuEF (HR, 1.40; 95% CI, 1.13-1.73) per 1 standard deviation (SD) increase in the natural log of FGF23. The Lunn-McNeil method determined that the risk association was consistent across all subtypes. The rate ratio of total HF events increased with FGF23 quartile. In multivariable-adjusted models, compared with quartile 1, FGF23 quartile 4 had a rate ratio of 1.81 (95% CI, 1.28-2.57) for total HF events. Limitations: Self-report of HF hospitalizations and possible lack of an echocardiogram at time of hospitalization. Conclusions: In this large multicenter prospective cohort study, elevated FGF23 levels were associated with increased risks for all HF subtypes. Plain-Language Summary: Heart failure (HF) is a prominent cause of morbidity and mortality in individuals with chronic kidney disease (CKD). Identifying potential pathways in the development of HF is essential in developing therapies to prevent and treat HF. In a large cohort of individuals with CKD, the Chronic Renal Insufficiency Cohort (N = 3,502), baseline fibroblast growth factor-23 (FGF23), a hormone that regulates phosphorous, was evaluated in relation to the development of incident and recurrent HF with reduced, preserved, and unknown ejection fraction. In this large multicenter prospective cohort study, elevated FGF23 levels were associated with increased risk of all HF subtypes. These findings demonstrate the need for further research into FGF23 as a target in preventing the development of HF in individuals with CKD.

2.
J Clin Med ; 11(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35407587

ABSTRACT

Given the central role of interstitial fibrosis in disease progression in chronic kidney disease (CKD), a role for diffusion-weighted MRI has been pursued. We evaluated the feasibility and preliminary efficacy of using radiomic features to phenotype apparent diffusion coefficient (ADC) maps and hence to the clinical classification(s) of the participants. The study involved 40 individuals (10 healthy and 30 with CKD (eGFR < 60 mL/min/1.73 m2)). Machine learning methods, such as hierarchical clustering and logistic regression, were used. Clustering resulted in the identification of two clusters, one including all individuals with CKD (n = 17), while the second one included all the healthy volunteers (n = 10) and the remaining individuals with CKD (n = 13), resulting in 100% specificity. Logistic regression identified five radiomic features to classify participants as with CKD vs. healthy volunteers, with a sensitivity and specificity of 93% and 70%, respectively, and an AUC of 0.95. Similarly, four radiomic features were able to classify participants as rapid vs. non-rapid CKD progressors among the 30 individuals with CKD, with a sensitivity and specificity of 71% and 43%, respectively, and an AUC of 0.75. These promising preliminary data should support future studies with larger numbers of participants with varied disease severity and etiologies to improve performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...