Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 13(1): 70-84, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36213965

ABSTRACT

The skin is exposed to viral pathogens, but whether they contribute to the oncogenesis of skin cancers has not been systematically explored. Here we investigated 19 skin tumor types by analyzing off-target reads from commonly available next-generation sequencing data for viral pathogens. We identified human papillomavirus 42 (HPV42) in 96% (n = 45/47) of digital papillary adenocarcinoma (DPA), an aggressive cancer occurring on the fingers and toes. We show that HPV42, so far considered a nononcogenic, "low-risk" HPV, recapitulates the molecular hallmarks of oncogenic, "high-risk" HPVs. Using machine learning, we find that HPV-driven transformation elicits a germ cell-like transcriptional program conserved throughout all HPV-driven cancers (DPA, cervical carcinoma, and head and neck cancer). We further show that this germ cell-like transcriptional program, even when reduced to the top two genes (CDKN2A and SYCP2), serves as a fingerprint of oncogenic HPVs with implications for early detection, diagnosis, and therapy of all HPV-driven cancers. SIGNIFICANCE: We identify HPV42 as a uniform driver of DPA and add a new member to the short list of tumorigenic viruses in humans. We discover that all oncogenic HPVs evoke a germ cell-like transcriptional program with important implications for detecting, diagnosing, and treating all HPV-driven cancers. See related commentary by Starrett et al., p. 17. This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Adenocarcinoma, Clear Cell , Adenocarcinoma, Papillary , Bone Neoplasms , Breast Neoplasms , Papillomavirus Infections , Skin Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Papillomaviridae/genetics , Germ Cells/pathology
2.
Nat Cancer ; 2(7): 693-708, 2021 07.
Article in English | MEDLINE | ID: mdl-35121945

ABSTRACT

How targeted therapies and immunotherapies shape tumors, and thereby influence subsequent therapeutic responses, is poorly understood. In the present study, we show, in melanoma patients and mouse models, that when tumors relapse after targeted therapy with MAPK pathway inhibitors, they are cross-resistant to immunotherapies, despite the different modes of action of these therapies. We find that cross-resistance is mediated by a cancer cell-instructed, immunosuppressive tumor microenvironment that lacks functional CD103+ dendritic cells, precluding an effective T cell response. Restoring the numbers and functionality of CD103+ dendritic cells can re-sensitize cross-resistant tumors to immunotherapy. Cross-resistance does not arise from selective pressure of an immune response during evolution of resistance, but from the MAPK pathway, which not only is reactivated, but also exhibits an increased transcriptional output that drives immune evasion. Our work provides mechanistic evidence for cross-resistance between two unrelated therapies, and a scientific rationale for treating patients with immunotherapy before they acquire resistance to targeted therapy.


Subject(s)
Melanoma , Tumor Microenvironment , Animals , Humans , Immune Evasion , Immunologic Factors/therapeutic use , Immunotherapy , Melanoma/drug therapy , Mice , Neoplasm Recurrence, Local , Protein Kinase Inhibitors/pharmacology
3.
EMBO Mol Med ; 12(11): e12525, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33026191

ABSTRACT

Merkel cell carcinoma (MCC) is a highly aggressive, neuroendocrine skin cancer that lacks actionable mutations, which could be utilized for targeted therapies. Epigenetic regulators governing cell identity may represent unexplored therapeutic entry points. Here, we targeted epigenetic regulators in a pharmacological screen and discovered that the lysine-specific histone demethylase 1A (LSD1/KDM1A) is required for MCC growth in vitro and in vivo. We show that LSD1 inhibition in MCC disrupts the LSD1-CoREST complex leading to displacement and degradation of HMG20B (BRAF35), a poorly characterized complex member that is essential for MCC proliferation. Inhibition of LSD1 causes derepression of transcriptional master regulators of the neuronal lineage, activates a gene expression signature resembling normal Merkel cells, and induces cell cycle arrest and cell death. Our study unveils the importance of LSD1 for maintaining cellular plasticity and proliferation in MCC. There is also growing evidence that cancer cells exploit cellular plasticity and dedifferentiation programs to evade destruction by the immune system. The combination of LSD1 inhibitors with checkpoint inhibitors may thus represent a promising treatment strategy for MCC patients.


Subject(s)
Carcinoma, Merkel Cell , Skin Neoplasms , Carcinoma, Merkel Cell/drug therapy , Carcinoma, Merkel Cell/genetics , Cell Death , Cell Differentiation , Histone Demethylases/genetics , Humans , Skin Neoplasms/drug therapy
4.
Mol Cell ; 74(4): 729-741.e7, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30982745

ABSTRACT

The nascent polypeptide-associated complex (NAC) is a conserved ribosome-associated protein biogenesis factor. Whether NAC exerts chaperone activity and whether this function is restricted to de novo protein synthesis is unknown. Here, we demonstrate that NAC directly exerts chaperone activity toward structurally diverse model substrates including polyglutamine (PolyQ) proteins, firefly luciferase, and Aß40. Strikingly, we identified the positively charged ribosome-binding domain in the N terminus of the ßNAC subunit (N-ßNAC) as a major chaperone entity of NAC. N-ßNAC by itself suppressed aggregation of PolyQ-expanded proteins in vitro, and the positive charge of this domain was critical for this activity. Moreover, we found that NAC also exerts a ribosome-independent chaperone function in vivo. Consistently, we found that a substantial fraction of NAC is non-ribosomal bound in higher eukaryotes. In sum, NAC is a potent suppressor of aggregation and proteotoxicity of mutant PolyQ-expanded proteins associated with human diseases like Huntington's disease and spinocerebellar ataxias.


Subject(s)
Amyloid beta-Peptides/genetics , Molecular Chaperones/genetics , Protein Aggregation, Pathological/genetics , Amyloid beta-Peptides/chemistry , Binding Sites/genetics , Humans , Huntington Disease/genetics , Huntington Disease/pathology , Luciferases/chemistry , Luciferases/genetics , Molecular Chaperones/chemistry , Peptides/chemistry , Peptides/genetics , Protein Binding/genetics , Protein Biosynthesis/genetics , Protein Domains/genetics , Protein Folding , Ribosomes/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...