Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 108: 109-21, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25212867

ABSTRACT

Allelopathy is the process whereby an organic chemical (allelochemical) released from one plant influences the growth and development of other plants. Allelochemicals produced by specific rice (Oryza sativa L.) cultivars have potential to manage barnyard grass (Echinochloa crus-galli L.), a major yield-limiting weed species in rice production systems in Asia and North America. In this study, isolation and identification of an allelopathic compound, N-trans-cinnamoyltyramine (NTCT), in a Vietnamese rice cultivar 'OM 5930' was accomplished through bioassay-guided purification using reversed-phase liquid chromatography coupled with spectroscopic techniques, including tandem mass spectrometry, high resolution mass spectrometry, as well as one-dimensional and two-dimensional (1)H NMR and (13)C NMR spectroscopy. The identified compound, NTCT is considered a ß-phenylethylamine. NTCT inhibited root and hypocotyl growth of cress (Lepidium sativum L.), barnyard grass and red sprangletop (Leptochloa chinensis L. Nees) at concentrations as low as 0.24 µM. The ED50 (concentration required for 50% inhibition) of NTCT on barnyard grass root and hypocotyl elongation were 1.35 and 1.85 µM, respectively. Results further demonstrated that mortality of barnyard grass and red sprangletop seedlings was >80% at a concentration of 2.4 µM of NTCT. By 20 days after transplanting, 0.425 nmol of NTCT per OM 5930 rice seedling was released into the culture solution. With concentrations of 42 µg g(-1) fresh weight, production of NTCT in intact rice plants can be considered high. These findings suggest that developing plants of Vietnamese rice cultivar OM 5930 release NTCT and may be utilized to suppress barnyard grass in rice fields. The potency of NTCT may encourage development of this compound as a bio-herbicide.


Subject(s)
Cinnamates/pharmacology , Oryza/chemistry , Phenethylamines/isolation & purification , Pheromones/pharmacology , Tyramine/analogs & derivatives , Cinnamates/analysis , Cinnamates/chemistry , Herbicides/pharmacology , Molecular Structure , Oryza/physiology , Phenethylamines/analysis , Stereoisomerism , Tyramine/analysis , Tyramine/chemistry , Tyramine/pharmacology
2.
In Vitro Cell Dev Biol Anim ; 50(6): 572-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24519175

ABSTRACT

Germline competent embryonic stem (ES) cells can serve as a tool to create genetically engineered rat strains used to elucidate gene function or provide disease models. In optimum culture conditions, ES cells are able to retain their pluripotent state. The type of components present and their concentration in ES cell culture media greatly influences characteristics of ES cells including the ability to maintain the cells in a pluripotent state. We routinely use 2i media containing inhibitors CHIR99021 and PD0325901 to culture rat ES cells. CHIR99021 specifically inhibits the Gsk3ß pathway. We have found that the vendor source of CHIR99021 has a measurable influence on the level of aneuploidy seen over time as rat ES cells are passaged. Karyotyping of three different rat ES cell lines passaged multiple times showed increased aneuploidy when CHIR99021 from source B was used. Mass spectrometry analysis of this inhibitor showed the presence of unexpected synthetic small molecules, which might directly or indirectly cause increases in chromosome instability. Identifying these molecules could further understanding of their influence on chromosome stability and indicate how to improve synthesis of this media component to prevent deleterious effects in culture.


Subject(s)
Aneuploidy , Embryonic Stem Cells/cytology , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Benzamides , Cell Line , Diphenylamine/analogs & derivatives , Embryonic Stem Cells/drug effects , Glycogen Synthase Kinase 3/antagonists & inhibitors , Karyotype , Rats
3.
Nat Prod Commun ; 9(9): 1283-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25918792

ABSTRACT

Naturally occurring benzoxazinones (Bx) are a highly reactive class of compounds that have received particular attention in the past several decades. Recently, we identified 2-ß-D-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one (DIBOA-Glc) as the compound present in the roots of Eastern gamagrass {Tripsacum dactyloides (L.)} responsible for atrazine degradation. However, characterization of the DIBOA-Glc/atrazine degradation reaction has been limited due to difficulties in attaining sufficient quantities of purified DIBOA-Glc. The objective of the study was to develop a simple purification and isolation method for obtaining bulk quantities of highly purified DIBOA-Glc. T. dactyloides roots were extracted with 90% aqueous methanol, and the crude extract was fractionated using an HPLC equipped with a C8 semi-prep column and fraction collector. UHPLC-DAD-MS/MS was used to confirm the identity of DIBOA-Glc in the fractions collected. Analysis by 13C and 1H NMR and DAD indicated that 542 mg of DIBOA-Glc with a purity of > 99% was obtained. The reactivity of the DIBOA-Glc was confirmed in a 16 hour assay with atrazine, which resulted in 48.5% ± 1.2% (SD) atrazine degradation. The method described here offers several advantages over existing extraction and synthesis methods, which are more cumbersome, use hazardous chemicals, and yield only small quantities of purified compound. The newly developed method will facilitate future research characterizing the chemical behavior of DIBOA-Glc and determine its potential as an atrazine mitigation and remediation tool.


Subject(s)
Benzoxazines/chemistry , Benzoxazines/isolation & purification , Chemical Fractionation/methods , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Poaceae/chemistry , Tandem Mass Spectrometry/methods , Plant Roots/chemistry
4.
J Agric Food Chem ; 61(34): 8026-33, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23885866

ABSTRACT

This study was part of a broader effort to identify and characterize promising atrazine-degrading phytochemicals in Eastern gamagrass (Tripsacum dactyloides ; EG) roots for the purpose of mitigating atrazine transport from agroecosystems. The objective of this study was to isolate and identify atrazine-degrading compounds in EG root extracts. Eastern gamagrass roots were extracted with methanol, and extracts were subjected to a variety of separation techniques. Fractions from each level of separation were tested for atrazine-degrading activity by a simple assay. Compounds were identified using high-performance liquid chromatography-tandem mass spectrometry. Results from the experiments identified 2-ß-d-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one (DIBOA-Glc) as the compound responsible for atrazine degradation in the root extract fractions collected. 2-ß-d-Glucopyranosyloxy-1,4-benzoxazin-3-one (HBOA-Glc) was also identified in the root extract fractions, but it did not demonstrate activity against atrazine. Estimated root tissue concentrations were 210 mg kg(-1) (wet wt basis) for DIBOA-Glc and 71 mg kg(-1) for HBOA-Glc (dry wt basis, 710 ± 96 and 240 ± 74 mg kg(-1), respectively). This research was the first to describe the occurrence and concentrations of an atrazine-degrading benzoxazinone compound isolated from EG tissue.


Subject(s)
Atrazine/chemistry , Benzoxazines/chemistry , Plant Extracts/chemistry , Poaceae/chemistry , Benzoxazines/isolation & purification , Biodegradation, Environmental , Plant Extracts/isolation & purification , Plant Roots/chemistry
5.
Chem Res Toxicol ; 26(4): 555-63, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23488987

ABSTRACT

There is substantial interest in small molecules that can be used to detect or kill the hypoxic (low oxygen) cells found in solid tumors. Nitroaryl moieties are useful components in the design of hypoxia-selective imaging agents and prodrugs because one-electron reductases can convert the nitroaryl group to nitroso, hydroxylamino, and amino metabolites selectively under low oxygen conditions. Here, we describe the in vitro, cell free metabolism of a pro-fluorescent substrate, 6-nitroquinoline (1) under both aerobic and hypoxic conditions. Both LC-MS and fluorescence spectroscopic analyses provided evidence that the one-electron reducing enzyme system, xanthine/xanthine oxidase, converted the nonfluorescent parent compound 1 to the known fluorophore 6-aminoquinoline (2) selectively under hypoxic conditions. The presumed intermediate in this reduction process, 6-hydroxylaminoquinoline (6), is fluorescent and can be efficiently converted by xanthine/xanthine oxidase to 2 only under hypoxic conditions. This finding provides evidence for multiple oxygen-sensitive steps in the enzymatic conversion of nitroaryl compounds to the corresponding amino derivatives. In a side reaction that is separate from the bioreductive metabolism of 1, xanthine oxidase converted 1 to 6-nitroquinolin-2(1H)-one (5). These studies may enable the use of 1 as a fluorescent substrate for the detection and profiling of one-electron reductases in cell culture or biopsy samples. In addition, the compound may find use as a fluorogenic probe for the detection of hypoxia in tumor models. The occurrence of side products such as 5 in the enzymatic bioreduction of 1 underscores the importance of metabolite identification in the characterization of hypoxia-selective probes and drugs that employ nitroaryl units as oxygen sensors.


Subject(s)
Aminoquinolines/metabolism , Nitroquinolines/metabolism , Hypoxia/metabolism , Xanthine/metabolism , Xanthine Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...