Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 1072: 393-397, 2018.
Article in English | MEDLINE | ID: mdl-30178377

ABSTRACT

In sepsis, endothelial dysfunction is a crucial driver known to limit the survival rate of affected patients. For this, ROS-mediated signaling plays an important role in endothelial communication and functionality. In the management of sepsis, polyunsaturated fatty acids (PUFA) have received increasing attention regarding their anti-inflammatory potential neglecting the oxidative properties of these substances. Therefore, in the present study we examined the capacity of PUFA to interfere with the expression of major ROS-producing enzymes, as well as endothelial ROS production itself. The human microvascular endothelial cells TIME (ATCC number: CRL-4025) were used. Cells were cultured in medium enriched with LNA (C18:3n3), EPA (C20:5n3), DHA (C22:6n3), LA (C18:2n6), or AA (C20:4n6) in concentrations of 15 µM totaling 144 h. Stimulation of cells was performed in the last 24 h of fatty acid supplementation by addition of the cytokines TNF-α + IL-1ß + IFN-γ (5 ng/ml each). Gene expression of eNOS, COX-2, and NOX-4 was evaluated by qPCR. ROS synthesis was analyzed by means of a flow cytometry-based rhodamine 123 assay. Cytokine stimulation was found to differentially affect gene expression of major ROS synthesizing enzymes: eNOS was decreased whereas COX-2 and NOX-4 were increased. As a consequence, cytokine stimulation had no effect on rhodamine accumulation in endothelial cells. PUFA supplementation alone did not affect the gene expression of eNOS, COX-2, and NOX-4. Nevertheless, an increasing action of PUFA on the stimulation-induced reduction in eNOS expression was found. More importantly, the number of rhodamine positive endothelial cells almost doubled following enrichment with the PUFA EPA, DHA or AA. This effect was independent of the stimulation status of the cells but seemed to be related to the number of double bonds of a supplemented fatty acid. Our data warrant further studies to ensure that increased endothelial cell oxidative stress is not boosted by PUFA in septic patients.


Subject(s)
Endothelial Cells/metabolism , Fatty Acids, Unsaturated/pharmacology , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Cell Line , Humans , Microvessels/metabolism
2.
PeerJ ; 6: e4212, 2018.
Article in English | MEDLINE | ID: mdl-29312832

ABSTRACT

BACKGROUND: Toll like receptors (TLRs) are an important and evolutionary conserved class of pattern recognition receptors associated with innate immunity. The recognition of Gram-positive cell wall constituents strongly depends on TLR2. In order to be functional, TLR2 predominantly forms a heterodimer with TLR1 or TLR6 within specialized membrane microdomains, the lipid rafts. The membrane lipid composition and the physicochemical properties of lipid rafts are subject to modification by exogenous fatty acids. Previous investigations of our group provide evidence that macrophage enrichment with polyunsaturated fatty acids (PUFA) induces a reordering of lipid rafts and non-rafts based on the incorporation of supplemented PUFA as well as their elongation and desaturation products. METHODS: In the present study we investigated potential constraining effects of membrane microdomain reorganization on the clustering of TLR2 with its co-receptors TLR1 and TLR6 within lipid rafts. To this end, RAW264.7 macrophages were supplemented with either docosahexaenoic acid (DHA) or arachidonic acid (AA) and analyzed for receptor expression and microdomain localization in context of TLR stimulation. RESULTS AND CONCLUSIONS: Our analyses showed that receptor levels and microdomain localization were unchanged by PUFA supplementation. The TLR2 pathway, in contrast to the TLR4 signaling cascade, is not affected by exogenous PUFA at the membrane level.

3.
Int J Mol Sci ; 18(12)2017 Dec 16.
Article in English | MEDLINE | ID: mdl-29258201

ABSTRACT

Polyunsaturated fatty acids (PUFA) are reported to exert prophylactic and acute therapeutic effects in diseases linked to endothelial dysfunction. In the present study, the consequences of a PUFA enrichment of endothelial cells (cell line TIME) on cell viability, expression of the cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractant protein 1 (MCP-1), synthesis of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and vascular adhesion molecule 1 (VCAM-1), and production of the coagulation factors plasminogen activator inhibitor-1 (PAI-1), von Willebrand factor (vWF), and tissue factor (TF) was analyzed in parallel. PUFA of both the n3 and the n6 family were investigated in a physiologically relevant concentration of 15 µM, and experiments were performed in both the presence and the absence of the pro-inflammatory cytokines interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). Supplementation of the culture medium with particular fatty acids was found to have a promoting effect on cellular production of the cytokines IL-6, IL-8, GM-CSF, and MCP-1. Further on, PUFA treatment in the absence of a stimulant diminished the percentage of endothelial cells positive for ICAM-1, and adversely affected the stimulation-induced upregulation of VCAM-1. Cell viability and production of coagulation factors were not or only marginally affected by supplemented fatty acids. Altogether, the data indicate that PUFA of either family are only partially able to counterbalance the destructive consequences of an endothelial dysfunction.


Subject(s)
Cytokines/metabolism , Endothelial Cells/metabolism , Fatty Acids, Unsaturated/pharmacology , Cell Survival/drug effects , Chemokine CCL2/metabolism , Endothelial Cells/drug effects , Humans , Intercellular Adhesion Molecule-1/metabolism , Interferon-gamma/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
4.
Int J Mol Sci ; 18(2)2017 Jan 28.
Article in English | MEDLINE | ID: mdl-28134837

ABSTRACT

Alteration of miRNAs and dietary polyunsaturated fatty acids (PUFAs) underlies vascular inflammation. PUFAs are known to be incorporated into the cell membrane of monocytes/macrophages or endothelial cells, the major cellular players of vascular diseases, thereby affecting cellular signal transduction. Nevertheless, there are no investigations concerning the PUFA impact on miRNA expression by these cells. With regard to the key role miRNAs play for overall cellular functionality, this study aims to elucidate whether PUFAs affect miRNA expression profiles. To this end, the monocyte/macrophage cell line RAW264.7 and the endothelial cell line TIME were enriched with either docosahexaenoic acid (DHA; n3-PUFA) or arachidonic acid (AA; n6-PUFA) until reaching a stable incorporation into the plasma membrane and, at least in part, exposed to an inflammatory milieu. Expressed miRNAs were determined by deep sequencing, and compared to unsupplemented/unstimulated controls. Data gained clearly show that PUFAs in fact modulate miRNA expression of both cell types analyzed regardless the presence/absence of an inflammatory stimulator. Moreover, certain miRNAs already linked to vascular inflammation were found to be affected by cellular PUFA enrichment. Hence, vascular inflammation appears to be influenced by dietary fatty acids, inter alia, via PUFA-mediated modulation of the type and amount of miRNAs synthesized by cells involved in the inflammatory process.


Subject(s)
Endothelial Cells/metabolism , Fatty Acids, Unsaturated/pharmacology , Gene Expression Profiling , Macrophages/metabolism , MicroRNAs/metabolism , Monocytes/metabolism , Animals , Cluster Analysis , Computer Simulation , Cytokines/pharmacology , Endothelial Cells/drug effects , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice , MicroRNAs/genetics , Monocytes/drug effects , Pilot Projects , RAW 264.7 Cells , Reproducibility of Results
5.
Cytokine ; 70(2): 173-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25148723

ABSTRACT

In order to examine the immunomodulatory effects of antithrombin III (AT-III) and C1 esterase inhibitor (C1-INH) in human monocytes, we investigated the intracellular expression of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α in an ex-vivo laboratory study in a whole blood setting. Heparinized whole blood samples from 23 healthy male and female volunteers (mean age: 27±7years) were pre-incubated with clinically relevant concentrations of AT-III (n=11) and C1-INH (n=12), then stimulated with 0.2 ng/mL lipopolysaccharide (LPS) for 3h. After phenotyping CD14⁺ monocytes, intracellular expression of IL-6, IL-8, and TNF-α was assessed using flow cytometry. In addition, 12 whole blood samples (AT-III and C1-INH, n=6 each) were examined using hirudin for anticoagulation; all samples were processed in the same way. To exclude cytotoxicity effects, 7-amino-actinomycin D and Nonidet P40 staining were used to investigate probes. This study is the first to demonstrate the influence of C1-INH and AT-III on the monocytic inflammatory response in a whole blood setting, which mimics the optimal physiological setting. Cells treated with AT-III exhibited significant downregulation of the proportion of gated CD14⁺ monocytes for IL-6 and IL-8, in a dose-dependent manner; downregulation for TNF-α did not reach statistical significance. There were no significant effects on mean fluorescence intensity (MFI). In contrast, C1-INH did not significantly reduce the proportion of gated CD14⁺ monocytes or the MFI regarding IL-6, TNF-α, and IL-8. When using hirudin for anticoagulation, no difference in the anti-inflammatory properties of AT-III and C1-INH in monocytes occurs. Taken together, in contrast to TNF-α, IL-6 and IL-8 were significantly downregulated in monocytes in an ex-vivo setting of human whole blood when treated with AT-III. This finding implicates monocytes as an important point of action regarding the anti-inflammatory properties of AT-III in sepsis. C1-INH was unable to attenuate the monocytic response, which supports the hypothesis that other cellular components in whole blood (e.g., neutrophils) might be responsible for the known effects of C1-INH in inflammation.


Subject(s)
Antithrombin III/pharmacology , Complement C1 Inhibitor Protein/pharmacology , Inflammation/blood , Inflammation/pathology , Lipopolysaccharides/pharmacology , Monocytes/pathology , Adult , Anticoagulants/pharmacology , Cell Death/drug effects , Female , Hirudins/pharmacology , Humans , Male , Monocytes/drug effects , Young Adult
6.
Carbohydr Polym ; 95(1): 404-13, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23618286

ABSTRACT

The objective of this study was to investigate the suitability of carbohydrate plasma volume expanders as a novel polymer platform for tumor targeting. Many synthetic polymers have already been synthesized for targeted tumor therapy, but potential advantages of these carbohydrates include inexpensive synthesis, constant availability, a good safety profile, biodegradability and the long clinical use as plasma expanders. Three polymers have been tested for cytotoxicity and cytokine activation in cell cultures and conjugated with a near-infrared fluorescent dye: hydroxyethyl starches (HES 200 kDa and HES 450 kDa) and dextran (DEX 500 kDa). Particle size and molecular weight distribution were determined by asymmetric flow field-flow fractionation (AF4). The biodistribution was investigated non-invasively in nude mice using multispectral optical imaging. The most promising polymer conjugate was characterized in human colon carcinoma xenograft bearing nude mice. A tumor specific accumulation of HES 450 was observed, which proves it's potential as carrier for passive tumor targeting.


Subject(s)
Colonic Neoplasms/metabolism , Dextrans/administration & dosage , Hydroxyethyl Starch Derivatives/administration & dosage , Plasma Substitutes/administration & dosage , Animals , Cell Survival/drug effects , Cells, Cultured , Colonic Neoplasms/pathology , Cytokines/metabolism , Dextrans/chemistry , Dextrans/pharmacokinetics , Female , Hep G2 Cells , Humans , Hydroxyethyl Starch Derivatives/chemistry , Hydroxyethyl Starch Derivatives/pharmacokinetics , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Mice , Mice, Nude , Plasma Substitutes/chemistry , Plasma Substitutes/pharmacokinetics , Tissue Distribution , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...