Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22268755

ABSTRACT

BackgroundThere has been an unprecedented global effort to produce safe and effective vaccines against SARS-CoV-2. However, production challenges, supply shortages and unequal global reach, together with an increased number of breakthrough infections due to waning of immunity and the emergence of new variants of concern (VOC), have prolonged the pandemic. To boost the immune response, several heterologous vaccination regimes have been tested and have shown increased antibody responses compared to homologous vaccination. Here we evaluated the effect of mRNA vaccine booster on immunogenicity in individuals who had been vaccinated with two doses of inactivated vaccines. MethodsThe levels of specific antibodies against the receptor-binding domain (RBD) of the spike protein from wild-type virus and the Beta, Delta and Omicron variants were measured in healthy individuals who had received two doses of homologous inactivated (BBIBP-CorV or CoronoVac) or mRNA (BNT162b2 or mRNA-1273) vaccines, and in donors who were given an mRNA vaccine boost after two doses of either vaccine. Pre-vaccinated healthy donors, or individuals who had been infected and subsequently received the mRNA vaccine were also included as controls. In addition, specific memory B and T cell responses were measured in a subset of samples. ResultsA booster dose of an mRNA vaccine significantly increased the level of specific antibodies that bind to the RBD domain of the wild-type (6-fold) and VOCs including Delta (8-fold) and Omicron (14-fold), in individuals who had previously received two doses of inactivated vaccines. The level of specific antibodies in the heterologous vaccination group was furthermore similar to that in individuals receiving a third dose of homologous mRNA vaccines or boosted with mRNA vaccine after natural infection. Moreover, this heterologous vaccination regime significantly enhanced the specific memory B and T cell responses. ConclusionsHeterologous prime-boost immunization with inactivated vaccine followed by an mRNA vaccine boost markedly increased the levels of specific antibodies and B and T cell responses and may thus increase protection against emerging SARS-CoV-2 variants including Omicron.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21256821

ABSTRACT

mRNA-based vaccines effectively induce protective neutralizing antibody responses against SARS-CoV-2, the etiological agent of COVID-19. The specific compositional patterns of these responses remain largely unknown. We found that SARS-CoV-2-naive individuals receiving the first dose of an mRNA vaccine developed a SARS-CoV-2-specific antibody response with a subclass profile comparable to that induced by the natural infection, except IgA2, which did not increase. SARS-CoV-2-naive subjects also mounted a robust virus-specific recall response after receiving the second dose. This response increased all IgG subclasses, but boosted neither IgM nor IgA1 and IgA2 subclasses. In contrast, individuals recovered from COVID-19 mounted peak virus-specific antibody responses upon primary immunization and did not further augment such responses following secondary immunization. Remarkably, compared to SARS-CoV-2-naive subjects, individuals with pre-existing immunity showed increased levels of all virus-specific antibodies but IgG3 following primary vaccination. By dissecting the heterogeneity of mRNA vaccine-induced humoral responses to SARS-CoV-2, our findings indicate that the induction of optimal immune protection may require the development of personalized vaccination programs.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21256002

ABSTRACT

SARS-CoV-2 infection induces virus-reactive memory B cells expressing unmutated antibodies, which hints at their emergence from naive B cells. Yet, the dynamics of virus-specific naive B cells and their impact on immunity and immunopathology remain unclear. Here, we longitudinally studied moderate to severe COVID-19 patients to dissect SARS-CoV-2-specific B cell responses overtime. We found a broad virus-specific antibody response during acute infection, which evolved into an IgG1-dominated response during convalescence. Acute infection was associated with increased mature B cell progenitors in the circulation and the unexpected expansion of virus-targeting naive-like B cells that further augmented during convalescence together with virus-specific memory B cells. In addition to a transitory increase in tissue-homing CXCR3+ plasmablasts and extrafollicular memory B cells, most COVID-19 patients showed persistent activation of CD4+ and CD8+ T cells along with transient or long-lasting changes of key innate immune cells. Remarkably, virus-specific antibodies and the frequency of naive B cells were among the major variables defining distinct immune signatures associated with disease severity and inflammation. Aside from providing new insights into the complexity of the immune response to SARS-CoV-2, our findings indicate that the de novo recruitment of mature B cell precursors into the periphery may be central to the induction of antiviral immunity.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20248461

ABSTRACT

The production of SARS-CoV-2-specific neutralizing antibodies is widely considered as a key mechanism for COVID-19 resolution and protection. However, beyond their protective function, antibodies to SARS-CoV-2 may also participate in disease pathogenesis. To explore the potential relationship between virus-specific humoral responses and COVID-19 immunopathology, we measured serum antibody classes and subclasses to the receptor-binding domain of the SARS-CoV-2 spike protein and the nucleoprotein in a cohort of hospitalized COVID-19 patients with moderate to severe disease. We found that RBD-specific IgG1 and IgG3 dominated the humoral response to SARS-CoV-2, were more abundant in severe patients, and positively correlated with several clinical parameters of inflammation. In contrast, a virus-specific IgA2 response skewed toward RBD rather than NP associated with a more favorable clinical course. Interestingly, RBD-dominant IgA2 responses were mostly detected in patients with gastrointestinal symptoms, suggesting the possible involvement of intrinsically tolerogenic gut immune pathways in the attenuation of virus-induced inflammation and disease resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...