Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RMD Open ; 7(1)2021 02.
Article in English | MEDLINE | ID: mdl-33542047

ABSTRACT

OBJECTIVE: To evaluate whether the addition of colchicine to standard treatment for COVID-19 results in better outcomes. DESIGN: We present the results of a randomised, double-blinded, placebo-controlled clinical trial of colchicine for the treatment of moderate to severe COVID-19, with 75 patients allocated 1:1 from 11 April to 30 August 2020. Colchicine regimen was 0.5 mg thrice daily for 5 days, then 0.5 mg twice daily for 5 days. The primary endpoints were the need for supplemental oxygen, time of hospitalisation, need for admission and length of stay in intensive care unit and death rate. RESULTS: Seventy-two patients (36 for placebo and 36 for colchicine) completed the study. Median (and IQR) time of need for supplemental oxygen was 4.0 (2.0-6.0) days for the colchicine group and 6.5 (4.0-9.0) days for the placebo group (p<0.001). Median (IQR) time of hospitalisation was 7.0 (5.0-9.0) days for the colchicine group and 9.0 (7.0-12.0) days for the placebo group (p=0.003). At day 2, 67% versus 86% of patients maintained the need for supplemental oxygen, while at day 7, the values were 9% versus 42%, in the colchicine and the placebo groups, respectively (log rank; p=0.001). Two patients died, both in placebo group. Diarrhoea was more frequent in the colchicine group (p=0.26). CONCLUSION: Colchicine reduced the length of both, supplemental oxygen therapy and hospitalisation. The drug was safe and well tolerated. Once death was an uncommon event, it is not possible to ensure that colchicine reduced mortality of COVID-19. TRIAL REGISTRATION NUMBER: RBR-8jyhxh.


Subject(s)
COVID-19 Drug Treatment , Colchicine/administration & dosage , Length of Stay , Oxygen Inhalation Therapy , SARS-CoV-2/genetics , Severity of Illness Index , Adult , Aged , COVID-19/mortality , COVID-19/virology , Colchicine/adverse effects , Diarrhea/chemically induced , Double-Blind Method , Female , Humans , Intensive Care Units , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Treatment Outcome
2.
Cell Rep ; 11(6): 934-943, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25937275

ABSTRACT

Obesity is a major risk factor for asthma, which is characterized by airway hyperreactivity (AHR). In obesity-associated asthma, AHR may be regulated by non-TH2 mechanisms. We hypothesized that airway reactivity is regulated by insulin in the CNS, and that the high levels of insulin associated with obesity contribute to AHR. We found that intracerebroventricular (ICV)-injected insulin increases airway reactivity in wild-type, but not in vesicle acetylcholine transporter knockdown (VAChT KD(HOM-/-)), mice. Either neutralization of central insulin or inhibition of extracellular signal-regulated kinases (ERK) normalized airway reactivity in hyperinsulinemic obese mice. These effects were mediated by insulin in cholinergic nerves located at the dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (NA), which convey parasympathetic outflow to the lungs. We propose that increased insulin-induced activation of ERK in parasympathetic pre-ganglionic nerves contributes to AHR in obese mice, suggesting a drug-treatable link between obesity and asthma.


Subject(s)
Brain Stem/enzymology , Bronchial Hyperreactivity/complications , Cholinergic Neurons/enzymology , Extracellular Signal-Regulated MAP Kinases/metabolism , Hyperinsulinism/complications , MAP Kinase Signaling System , Animals , Bronchial Hyperreactivity/enzymology , Bronchial Hyperreactivity/physiopathology , Bronchoconstriction , Cholinergic Neurons/pathology , Diet, High-Fat , Enzyme Activation , Hyperinsulinism/enzymology , Hyperinsulinism/physiopathology , Inflammation/pathology , Injections, Intraventricular , Insulin/metabolism , Methacholine Chloride , Mice, Inbred C57BL , Mice, Obese , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Receptor, Insulin/metabolism
3.
Metabolism ; 64(2): 172-81, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25458831

ABSTRACT

Obesity is a major risk factor for asthma. Likewise, obesity is known to increase disease severity in asthmatic subjects and also to impair the efficacy of first-line treatment medications for asthma, worsening asthma control in obese patients. This concept is in agreement with the current understanding that some asthma phenotypes are not accompanied by detectable inflammation, and may not be ameliorated by classical anti-inflammatory therapy. There are growing evidences suggesting that the obesity-related asthma phenotype does not necessarily involve the classical T(H)2-dependent inflammatory process. Hormones involved in glucose homeostasis and in the pathogeneses of obesity likely directly or indirectly link obesity and asthma through inflammatory and non-inflammatory pathways. Furthermore, the endocrine regulation of the airway-related pre-ganglionic nerves likely contributes to airway hyperreactivity (AHR) in obese states. In this review, we focused our efforts on understanding the mechanism underlying obesity-related asthma by exploring the T(H)2-independent mechanisms leading to this disease.


Subject(s)
Adipose Tissue/immunology , Adiposity , Asthma/etiology , Models, Biological , Obesity/physiopathology , Th2 Cells/immunology , Adiponectin/blood , Adiponectin/metabolism , Adipose Tissue/metabolism , Airway Resistance , Animals , Asthma/blood , Asthma/immunology , Asthma/metabolism , Humans , Leptin/blood , Leptin/metabolism , Obesity/blood , Obesity/immunology , Obesity/metabolism , Th2 Cells/metabolism
4.
PLoS One ; 7(11): e47223, 2012.
Article in English | MEDLINE | ID: mdl-23144808

ABSTRACT

BACKGROUND AND AIMS: Nitric oxide-independent soluble guanylyl cyclase (sGC) activators reactivate the haem-oxidized enzyme in vascular diseases. This study was undertaken to investigate the anti-platelet mechanisms of the haem-independent sGC activator BAY 60-2770 in human washed platelets. The hypothesis that sGC oxidation potentiates the anti-platelet activities of BAY 60-2770 has been tested. METHODS: Human washed platelet aggregation and adhesion assays, as well as flow cytometry for α(IIb)ß(3) integrin activation and Western blot for α1 and ß1 sGC subunits were performed. Intracellular calcium levels were monitored in platelets loaded with a fluorogenic calcium-binding dye (FluoForte). RESULTS: BAY 60-2770 (0.001-10 µM) produced significant inhibition of collagen (2 µg/ml)- and thrombin (0.1 U/ml)-induced platelet aggregation that was markedly potentiated by the sGC inhibitor ODQ (10 µM). In fibrinogen-coated plates, BAY 60-2770 significantly inhibited platelet adhesion, an effect potentiated by ODQ. BAY 60-2770 increased the cGMP levels and reduced the intracellular Ca(2+) levels, both of which were potentiated by ODQ. The cell-permeable cGMP analogue 8-Br-cGMP (100 µM) inhibited platelet aggregation and Ca(2+) levels in an ODQ-insensitive manner. The cAMP levels remained unchanged by BAY 60-2770. Collagen- and thrombin-induced α(IIb)ß(3) activation was markedly inhibited by BAY 60-2770 that was further inhibited by ODQ. The effects of sodium nitroprusside (3 µM) were all prevented by ODQ. Incubation with ODQ (10 µM) significantly reduced the protein levels of α1 and ß1 sGC subunits, which were prevented by BAY 60-2770. CONCLUSION: The inhibitory effects of BAY 60-2770 on aggregation, adhesion, intracellular Ca(2+) levels and α(IIb)ß(3) activation are all potentiated in haem-oxidizing conditions. BAY 60-2770 prevents ODQ-induced decrease in sGC protein levels. BAY 60-2770 could be of therapeutic interest in cardiovascular diseases associated with thrombotic complications.


Subject(s)
Benzoates/pharmacology , Biphenyl Compounds/pharmacology , Blood Platelets/drug effects , Cyclic GMP/metabolism , Enzyme Activators/pharmacology , Guanylate Cyclase/metabolism , Hydrocarbons, Fluorinated/pharmacology , Platelet Activation/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Blood Platelets/cytology , Blood Platelets/enzymology , Calcium/metabolism , Cyclic AMP/metabolism , Enzyme Activation/drug effects , Humans , Platelet Adhesiveness/drug effects , Platelet Aggregation/drug effects , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Signal Transduction/drug effects , Soluble Guanylyl Cyclase
SELECTION OF CITATIONS
SEARCH DETAIL
...