Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 81(7): 073103, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20687701

ABSTRACT

Laser-induced breakdown spectroscopy (LIBS) is a recently developed locally destructive elemental analysis technique that can be used to analyze solid, liquid, and gaseous samples. In the system explored here, a neodymium-doped yttrium aluminum garnet laser ablates a small amount of the sample and spectral emission from the plume is analyzed using a set of synchronized spectrometers. We explore the use of LIBS to map the stoichiometry of compositionally graded amorphous indium zinc oxide thin-film libraries. After optimization of the experimental parameters (distance between lens and samples, spot size on the samples, etc.), the LIBS system was calibrated against inductively coupled plasma atomic emission spectroscopy which resulted in a very consistent LIBS-based elemental analysis. Various parameters that need to be watched closely in order to produce consistent results are discussed. We also compare LIBS and x-ray fluorescence as techniques for the compositional mapping of libraries.

2.
Faraday Discuss ; 140: 283-96; discussion 297-317, 2008.
Article in English | MEDLINE | ID: mdl-19213323

ABSTRACT

Anomalous small angle X-ray scattering (ASAXS) is shown to be an ideal technique to investigate the particle size and particle composition dynamics of carbon-supported alloy nanoparticle electrocatalysts at the atomic scale. In this technique, SAXS data are obtained at different X-ray energies close to a metal absorption edge, where the metal scattering strength changes, providing element specificity. ASAXS is used to, first, establish relationships between annealing temperature and the resulting particle size distribution for Pt25Cu75 alloy nanoparticle electrocatalyst precursors. The Pt specific ASAXS profiles were fitted with log-normal distributions. High annealing temperatures during alloy synthesis caused a significant shift in the alloy particle size distribution towards larger particle diameters. Second, ASAXS was used to characterize electrochemical Cu dissolution and dealloying processes of a carbon-supported Pt25Cu75 electrocatalyst precursor in acidic electrolytes. By performing ASAXS at both the Pt and Cu absorption edges, the unique power of this technique is demonstrated for probing composition dynamics at the atomic scale. These ASAXS measurements provided detailed information on the changes in the size distribution function of the Pt atoms and Cu atoms. A shift in the Cu scattering profile towards larger scattering vectors indicated the removal of Cu atoms from the alloy particle surface suggesting the formation of a Pt enriched Pt shell surrounding a Pt-Cu core. Together with XRD and TEM, ASAXS is proposed to play an increasingly important role in the mechanistic study of degradation phenomena of alloy nanoparticle electrocatalysts at the atomic scale.


Subject(s)
Electrochemistry/methods , Electrodes , Models, Chemical , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Platinum/chemistry , X-Ray Diffraction/methods , Catalysis , Computer Simulation , Electron Transport , Oxidation-Reduction , Particle Size , Scattering, Small Angle , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...