Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 41(42): 13159-66, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23007292

ABSTRACT

The photophysical properties of 2.3 nm thioglycolic acid (TGA) coated CdTe quantum dots (QDs) prepared by a reflux method have been studied in the presence of cationic meso-tetrakis(4-N-methylpyridyl) zinc porphyrin (ZnTMPyP4). Addition of the CdTe QDs to the porphyrin in H(2)O results in a marked red-shift and hypochromism in the porphyrin absorption spectrum, indicative of a non-covalent binding interaction with the QD surface. Only low equivalents of the quantum dot were required for complete quenching of the porphyrin fluorescence revealing that one quantum dot may quench more than one porphyrin. Similarly addition of porphyrin to the quantum dot provided evidence for very efficient quenching of the CdTe photoluminescence, suggesting the formation of CdTe-porphyrin aggregates. Definitive evidence for such aggregates was gathered using small angle X-ray spectroscopy (SAXS). Ultrafast transient absorption data are consistent with very rapid photoinduced electron transfer (1.3 ps) and the resultant formation of a long-lived porphyrin species.


Subject(s)
Cadmium/chemistry , Metalloporphyrins/chemistry , Quantum Dots , Tellurium/chemistry , Zinc/chemistry , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...