Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
F1000Res ; 8: 198, 2019.
Article in English | MEDLINE | ID: mdl-31249678

ABSTRACT

Background: Capsids of herpes simplex virus 1 (HSV-1) are assembled in the nucleus, translocated either to the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope, or released to the cytosol in a "naked" state via impaired nuclear pores that finally results in impairment of the nuclear envelope. The Us3 gene encodes a protein acting as a kinase, which is responsible for phosphorylation of numerous viral and cellular substrates. The Us3 kinase plays a crucial role in nucleus to cytoplasm capsid translocation. We thus investigate the nuclear surface in order to evaluate the significance of Us3 in maintenance of the nuclear envelope during HSV-1 infection. Methods: To address alterations of the nuclear envelope and capsid nucleus to cytoplasm translocation related to the function of the Us3 kinase we investigated cells infected with wild type HSV-1 or the Us3 deletion mutant R7041(∆Us3) by transmission electron microscopy, focused ion-beam electron scanning microscopy, cryo-field emission scanning electron microscopy, confocal super resolution light microscopy, and polyacrylamide gel electrophoresis. Results: Confocal super resolution microscopy and cryo-field emission scanning electron microscopy revealed decrement in pore numbers in infected cells. Number and degree of pore impairment was significantly reduced after infection with R7041(∆Us3) compared to infection with wild type HSV-1. The nuclear surface was significantly enlarged in cells infected with any of the viruses. Morphometric analysis revealed that additional nuclear membranes were produced forming multiple folds and caveolae, in which virions accumulated as documented by three-dimensional reconstruction after ion-beam scanning electron microscopy. Finally, significantly more R7041(∆Us3) capsids were retained in the nucleus than wild-type capsids whereas the number of R7041(∆Us3) capsids in the cytosol was significantly lower. Conclusions: The data indicate that Us3 kinase is involved in facilitation of nuclear pore impairment and, concomitantly, in capsid release through impaired nuclear envelope.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Nuclear Envelope , Protein Serine-Threonine Kinases , Viral Proteins , Capsid , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/physiology , Humans , Protein Serine-Threonine Kinases/physiology , Viral Proteins/physiology
2.
Viruses ; 7(1): 52-71, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25588052

ABSTRACT

Herpes simplex virus 1 (HSV-1) capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i) The number of R7041(∆US3) capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii) The mean number of R7041(∆US3) virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii) 98% of R7041(∆US3) virions were in the perinuclear space; (iv) The number of R7041(∆US3) capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3) yields were 2.37×10(8) and HSV-1 yields 1.57×10(8) PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3) virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective.


Subject(s)
Herpesvirus 1, Human/enzymology , Herpesvirus 1, Human/physiology , Protein Serine-Threonine Kinases/deficiency , Virus Assembly , Virus Release , Animals , Capsid/ultrastructure , Cell Nucleus , Chlorocebus aethiops , Cytoplasm/virology , Gene Deletion , Herpesvirus 1, Human/genetics , Microscopy, Electron , Vero Cells , Viral Load , Viral Proteins , Virion/ultrastructure
3.
Environ Sci Technol ; 44(23): 8983-8, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21053912

ABSTRACT

Chromate is a toxic contaminant of potential concern, as it is quite soluble in the alkaline pH range and could be released to the environment. In cementitous systems, CrO4(2−) is thought to be incorporated as a solid solution with SO4(2−) in ettringite. The formation of a solid solution (SS) could lower the soluble CrO4(2−) concentrations. Ettringite containing SO4(2−) or CrO4(2−) and mixtures thereof have been synthesized. The resulting solids and their solubility after an equilibration time of 3 months have been characterized. For CrO4-ettringite at 25 °C, a solubility product log K(S0) of −40.2 ± 0.4 was calculated: log K(CrO4−ettringite) = 6log{Ca2+} + 2log{Al(OH)4(−)} + 3log{CrO4(2−)} + 4log{OH−} + 26log{H2O}. X-ray diffraction and the analysis of the solution indicated the formation of a regular solid solution between SO4- and CrO4-ettringite with a miscibility gap between 0.4 ≤ XCrO4 ≤ 0.6. The miscibility gap of the SO4- and CrO4-ettringite solid solution could be reproduced with a dimensionless Guggenheim fitting parameter (a0) of 2.03. The presence of a solid solution between SO4- and CrO4-ettringite results in a stabilization of the solids compared to the pure ettringites and thus in an increased uptake of CrO4(2−) in cementitious systems.


Subject(s)
Chromates/chemistry , Minerals/chemistry , Sulfates/chemistry , Aluminum Hydroxide/chemistry , Environmental Pollutants/chemistry , Hydrogen-Ion Concentration , Models, Chemical , Refuse Disposal , Solubility , Solutions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...