Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(13): 14983-14992, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32069393

ABSTRACT

Au nanoparticle (NP) decorated heterogeneous TiO2 catalysts are known to be effective in the degradation of various organic pollutants. The photocatalytic performance of such Au-TiO2 structures remarkably depends on the size, morphology, and surface coverage of the Au NPs decorating TiO2. Here we propose an effective way of preparing a highly active Au nanocluster (NC) decorated TiO2 thin film by a novel photodeposition method. By altering the solvent type as well as the illumination time, we achieved well-controlled surface coverage of TiO2 by Au NCs, which directly influences the photocatalytic performance. Here the Au NCs coverage affects both the electron store capacity and the optical absorption of the hybrid Au-TiO2 system. At low surface coverage, 19.2-29.5%, the Au NCs seem to enhance significantly the optical adsorption of TiO2 at UV wavelengths which therefore leads to a higher photocatalytic performance.

2.
Rev Sci Instrum ; 90(5): 053704, 2019 May.
Article in English | MEDLINE | ID: mdl-31153234

ABSTRACT

We present an advanced experimental setup for time-resolved photoemission electron microscopy (PEEM) with sub-20 fs resolution, which allows for normal incidence and highly local sample excitation with ultrashort laser pulses. The scheme makes use of a sample rear side illumination geometry that enables us to confine the sample illumination spot to a diameter as small as 6 µm. We demonstrate an operation mode in which the spatiotemporal dynamics following a highly local excitation of the sample is globally probed with a laser pulse illuminating the sample from the front side. Furthermore, we show that the scheme can also be operated in a time-resolved normal incidence two-photon PEEM mode with interferometric resolution, a technique providing a direct and intuitive real-time view onto the propagation of surface plasmon polaritons.

3.
Nano Lett ; 14(5): 2431-5, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24702430

ABSTRACT

In this work, the mutual coupling and coherent interaction of propagating and localized surface plasmons within a model-type plasmonic assembly is experimentally demonstrated, imaged, and analyzed. Using interferometric time-resolved photoemission electron microscopy the interplay between ultrashort surface plasmon polariton wave packets and plasmonic nanoantennas is monitored on subfemtosecond time scales. The data reveal real-time insights into dispersion and localization of electromagnetic fields as governed by the elementary modes determining the functionality of plasmonic operation units.

4.
Opt Express ; 21(22): 27392-401, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24216961

ABSTRACT

In this paper we demonstrate the realization of an autocorrelator for the characterization of ultrashort surface plasmon polariton (SPP) pulses. A wedge shaped structure is used to continuously increase the time delay between two interfering SPPs. The autocorrelation signal is monitored by non-linear two-photon photoemission electron microscopy. The presented approach is applicable to other SPP sensitive detection schemes that provide only moderate spatial resolution and may therefore be of general interest in the field of ultrafast plasmonics.

5.
Phys Rev Lett ; 111(4): 046802, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23931393

ABSTRACT

Understanding the impact of lateral mode confinement in plasmonic waveguides is of fundamental interest regarding potential applications in plasmonic devices. The knowledge of the frequency-wave vector dispersion relation provides the full information on electromagnetic field propagation in a waveguide. This Letter reports on the measurement of the real part of the surface plasmon polariton dispersion relation in the near infrared spectral regime for individual nanoscale plasmonic waveguides, which were formed by deposition of para-hexaphenylene (p-6P) based nanofibers on top of a gold film. A detailed structural characterization of the nanofibers provides accurate information on the dimensions of the investigated waveguides and enables us to quantify the effect of mode confinement by comparison with experimental results from continuous p-6P films and calculations based on the effective index method.

6.
Opt Express ; 21(7): 8251-60, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23571915

ABSTRACT

Plasmonic wave packet propagation is monitored in dielectric-loaded surface plasmon polariton waveguides realized from para-hexaphenylene nanofibers deposited onto a 60 nm thick gold film. Using interferometric time resolved two-photon photoemission electron microscopy we are able to determine phase and group velocity of the surface plasmon polariton (SPP) waveguiding mode (0.967c and 0.85c at λ(Laser) = 812nm) as well as the effective propagation length (39 µm) along the fiber-gold interface. We furthermore observe that the propagation properties of the SPP waveguiding mode are governed by the cross section of the waveguide.


Subject(s)
Fiber Optic Technology/instrumentation , Nanoparticles/chemistry , Organic Chemicals/chemistry , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Photons
7.
Nano Lett ; 13(3): 1053-8, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23432531

ABSTRACT

The spatiotemporal evolution of a SPP wave packet with femtosecond duration is experimentally investigated in two different plasmonic focusing structures. A two-dimensional reconstruction of the plasmonic field in space and time is possible by the numerical analysis of interferometric time-resolved photoemission electron microscopy data. We show that the time-integrated and time-resolved view onto the wave packet dynamics allow one to characterize and compare the capabilities of two-dimensional components for use in plasmonic devices operating with ultrafast pulses.

8.
Opt Express ; 20(12): 12877-84, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22714314

ABSTRACT

In an interferometric time-resolved photoemission electron microscopy (ITR-PEEM) experiment, the near-field associated with surface plasmon polaritons (SPP) can be locally sensed via interference with ultrashort laser pulses. Here, we present ITR-PEEM data of SPP propagation at a gold vacuum interface recorded in a counter-propagating pump-probe geometry. In comparison to former work this approach provides a very intuitive real-time access to the SPP wave packet. The quantitative analysis of the PEEM data enables us to determine in a rather direct manner the propagation characteristics of the SPP.

SELECTION OF CITATIONS
SEARCH DETAIL
...