Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Test Anal ; 13(4): 833-840, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33453144

ABSTRACT

The General European Official Medicines Control Laboratory (OMCL) Network (GEON), co-ordinated by the European Directorate for the Quality of Medicines & HealthCare (EDQM), regularly organises market surveillance studies on specific categories of suspected illegal or illegally traded products. These studies are generally based on a combination of retrospective and prospective data collection over a defined period of time. This paper reports the results of the most recent study in this context with the focus on health products containing non-Anatomical Therapeutic Chemical-International Nonproprietary Name (ATC-INN) molecules. In total 1104 cases were reported by 16 countries for the period between January 2017 and the end of September 2019. The vast majority of these samples (83%) were collected from the illegal market, while only 3% originated from a legal source. For the rest of the samples, categorisation was not possible. Moreover, 69% of all the reported samples were presented as medicines, including sexual performance enhancers, sports performance enhancers, physical performance enhancers and cognitive enhancers or nootropic molecules that act on the central nervous system (CNS). Although the popularity of anabolics, PDE-5 inhibitors and CNS drugs in illegal products has already been reported, the study showed some new trends and challenges. Indeed, 11% of the samples contained molecules of biological origin, that is, research peptides, representing the second most reported category in this study. Furthermore, the study also clearly shows the increasing popularity of Selective Androgen Receptor Modulators and nootropics, two categories that need attention and should be further monitored.


Subject(s)
Commerce/legislation & jurisprudence , Drug and Narcotic Control , Illicit Drugs/supply & distribution , Performance-Enhancing Substances/supply & distribution , Commerce/trends , Europe , Humans , Illicit Drugs/classification , Illicit Drugs/legislation & jurisprudence , Performance-Enhancing Substances/classification , Prospective Studies , Retrospective Studies , Terminology as Topic
2.
J Chem Phys ; 135(15): 154311, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22029317

ABSTRACT

The excitonic splitting between the S(1) and S(2) electronic states of the doubly hydrogen-bonded dimer 2-pyridone[middle dot]6-methyl-2-pyridone (2PY·6M2PY) is studied in a supersonic jet, applying two-color resonant two-photon ionization (2C-R2PI), UV-UV depletion, and dispersed fluorescence spectroscopies. In contrast to the C(2h) symmetric (2-pyridone)(2) homodimer, in which the S(1) ← S(0) transition is symmetry-forbidden but the S(2) ← S(0) transition is allowed, the symmetry-breaking by the additional methyl group in 2PY·6M2PY leads to the appearance of both the S(1) and S(2) origins, which are separated by Δ(exp) = 154 cm(-1). When combined with the separation of the S(1) ← S(0) excitations of 6M2PY and 2PY, which is δ = 102 cm(-1), one obtains an S(1)/S(2) exciton coupling matrix element of V(AB, el) = 57 cm(-1) in a Frenkel-Davydov exciton model. The vibronic couplings in the S(1)/S(2) ← S(0) spectrum of 2PY·6M2PY are treated by the Fulton-Gouterman single-mode model. We consider independent couplings to the intramolecular 6a(') vibration and to the intermolecular σ(') stretch, and obtain a semi-quantitative fit to the observed spectrum. The dimensionless excitonic couplings are C(6a(')) = 0.15 and C(σ(')) = 0.05, which places this dimer in the weak-coupling limit. However, the S(1)/S(2) state exciton splittings Δ(calc) calculated by the configuration interaction singles method (CIS), time-dependent Hartree-Fock (TD-HF), and approximate second-order coupled-cluster method (CC2) are between 1100 and 1450 cm(-1), or seven to nine times larger than observed. These huge errors result from the neglect of the coupling to the optically active intra- and intermolecular vibrations of the dimer, which lead to vibronic quenching of the purely electronic excitonic splitting. For 2PY·6M2PY the electronic splitting is quenched by a factor of ~30 (i.e., the vibronic quenching factor is Γ(exp) = 0.035), which brings the calculated splittings into close agreement with the experimentally observed value. The 2C-R2PI and fluorescence spectra of the tautomeric species 2-hydroxypyridine·6-methyl-2-pyridone (2HP·6M2PY) are also observed and assigned.

3.
J Phys Chem B ; 113(9): 2937-43, 2009 Mar 05.
Article in English | MEDLINE | ID: mdl-19243205

ABSTRACT

Among the weak intermolecular interactions found in proteins, the amide N--H...pi interaction has been widely observed but remains poorly characterized as an individual interaction. We have investigated the isolated supersonic-jet-cooled dimer of the cis-amide and nucleobase analogue 2-pyridone (2PY) with benzene and benzene-d6. Both MP2 and SCS-MP2 geometry optimizations yield a T-shaped structure with a N--H...pi hydrogen bond to the benzene ring and the C=O group above, but far from the C--H bonds of benzene. The CCSD(T) calculated binding energy at the optimum geometry is De = 25.2 kJ/mol (dissociation energy D0 = 21.6 kJ/mol), corresponding to the H-bond strength of the water dimer or of N--H...O hydrogen bonds. The T-shaped geometry is supported by the infrared-ultraviolet depletion spectra of 2PY x benzene: The N--H stretch vibrational frequency is lowered by 56 cm(-1), and the C=O stretch vibration is lowered by 10 cm(-1), relative to those of bare 2PY, indicating a strong N--H...pi interaction and a weak interaction of the C=O group. The benzene C--H infrared stretches exhibit very small shifts (approximately 2 cm(-1)) relative to benzene, signaling the absence of interactions with the benzene C--H groups. The infrared spectral shifts are consistent with a strong nonconventional pi hydrogen bond and a T-shaped structure for 2PY x benzene. Symmetry-adapted perturbation theory calculations show that the N--H...pi interaction is by far the dominant stabilization factor.


Subject(s)
Amides/chemistry , Benzene/chemistry , Hydrogen Bonding , Hydrogen/chemistry , Nitrogen/chemistry , Carbon/chemistry , Models, Chemical , Models, Molecular , Molecular Conformation , Oxygen/chemistry , Pyridones/chemistry , Spectrophotometry, Infrared/methods , Spectrophotometry, Ultraviolet/methods
4.
Phys Chem Chem Phys ; 10(19): 2758-66, 2008 May 21.
Article in English | MEDLINE | ID: mdl-18464991

ABSTRACT

Fluorobenzenes are pi-acceptor synthons that form pi-stacked structures in molecular crystals as well as in artificial DNAs. We investigate the competition between hydrogen bonding and pi-stacking in dimers consisting of the nucleobase mimic 2-pyridone (2PY) and all fluorobenzenes from 1-fluorobenzene to hexafluorobenzene (n-FB, with n = 1-6). We contrast the results of high level ab initio calculations with those obtained using ultraviolet (UV) and infrared (IR) laser spectroscopy of isolated and supersonically cooled dimers. The 2PY.n-FB complexes with n = 1-5 prefer double hydrogen bonding over pi-stacking, as diagnosed from the UV absorption and IR laser depletion spectra, which both show features characteristic of doubly H-bonded complexes. The 2-pyridone.hexafluorobenzene dimer is the only pi-stacked dimer, exhibiting a homogeneously broadened UV spectrum and no IR bands characteristic for H-bonded species. MP2 (second-order Møller-Plesset perturbation theory) calculations overestimate the pi-stacked dimer binding energies by about 10 kJ/mol and disagree with the experimental observations. In contrast, the MP2 treatment of the H-bonded dimers appears to be quite accurate. Grimme's spin-component-scaled MP2 approach (SCS-MP2) is an improvement over MP2 for the pi-stacked dimers, reducing the binding energy by approximately 10 kJ/mol. When applied to explicitly correlated MP2 theory (SCS-MP2-R12 approach), agreement with the corresponding coupled-cluster binding energies [at the CCSD(T) level] is very good for the pi-stacked dimers, within +/- 1 kJ/mol for the 2PY complexes with 1-fluorobenzene, 1,2-difluorobenzene, 1,2,4,5-tetrafluorobenzene, pentafluorobenzene and hexafluorobenzene. Unfortunately, the SCS-MP2 approach also reduces the binding energy of the H-bonded species, leading to disagreement with both coupled-cluster theory and experiment. The SCS-MP2-R12 binding energies follow the SCS-MP2 binding energies closely, being about 0.5 and 0.7 kJ/mol larger for the H-bonded and pi-stacked forms, respectively, in an augmented correlation-consistent polarized valence quadruple-zeta basis. It seems that the SCS-MP2 and SCS-MP2-R12 methods cannot provide sufficient accuracy to replace the CCSD(T) method for intermolecular interactions where H-bonding and pi-stacking are competitive.

6.
J Chem Phys ; 125(11): 114308, 2006 Sep 21.
Article in English | MEDLINE | ID: mdl-16999475

ABSTRACT

The S(1)<-->S(0) vibronic spectra of supersonic jet-cooled 2-pyridone [pyridin-2-one (2PY)] and its N-H deuterated isotopomer (d-2PY) have been recorded by two-color resonant two-photon ionization, laser-induced fluorescence and emission, and fluorescence depletion spectroscopies. By combining these methods, the B origin of 2PY at 0(0) (0)+98 cm(-1) and the bands at +218 and +252 cm(-1) are identified as overtones of the S(1) state out-of-plane vibrations nu(1) (') and nu(2) ('), as are the analogous bands of d-2PY. Anharmonic double-minimum potentials are derived for the respective out-of-plane coordinates that predict further nu(1) (') and nu(2) (') overtones and combinations, reproducing approximately 80% of the vibronic bands up to 600 cm(-1) above the 0(0) (0) band. The fluorescence spectra excited at the electronic origins and the nu(1) (') and nu(2) (') out-of-plane overtone levels confirm these assignments. The S(1) nonplanar minima and S(1)<--S(0) out-of-plane progressions are in agreement with the determination of nonplanar vibrationally averaged geometries for the 0(0) (0) and 0(0) (0)+98 cm(-1) upper states by Held et al. [J. Chem. Phys. 95, 8732 (1991)]. The fluorescence lifetimes of the S(1) state vibrations show strong mode dependence: Those of the out-of-plane levels decrease rapidly above 200 cm(-1) excess vibrational energy, while the in-plane vibrations nu(5) ('), nu(8) ('), and nu(9) (') have longer lifetimes, although they are above or interspersed with the "dark" out-of-plane states. This is interpreted in terms of an S(1) (') state reaction with a low barrier towards a conical intersection with a prefulvenic geometry. Out-of-plane vibrational states can directly surmount this barrier, whereas in-plane vibrations are much less efficient in this respect. Analysis of the fluorescence spectra allows to identify nine in-plane S(0) (') state fundamentals, overtones of the S(0) state nu(1) (") and nu(2) (") out-of-plane vibrations, and >30 other overtones and combination bands. The B3LYP6-311++G(d,p) calculated anharmonic wave numbers are in very good agreement with the observed fundamentals, overtones, and combinations, with a deviation Delta(rms)=1.3%.

7.
Chemphyschem ; 7(7): 1494-9, 2006 Jul 17.
Article in English | MEDLINE | ID: mdl-16755637

ABSTRACT

2-Pyridone (pyridin-2-one) is a mimic of the uracil and thymine nucleobases, with only one N--H and C==O group. It provides a single H-bonding site, compared to three for the canonical pyrimidine nucleobases. Employing the supersonically cooled 9-methyladenine2-pyridone (9MAd x 2PY) complex, which is the simplest base pair to mimic adenine-uracil or adenine-thymine, we show that its gas-phase UV spectrum consists of contributions from two isomers. Based on the H-bonding sites of 9-methyladenine, these are the Watson-Crick and Hoogsteen forms. Combining two-color two-photon ionisation (2C-R2PI), UV-UV depletion and laser-induced fluorescence spectroscopies allows separation of the two band systems, revealing characteristic intermolecular in-plane vibrations of the two isomers. The calculated S(0) and S(1) intermolecular frequencies are in good agreement with the experimental ones. Ab initio calculations predict the Watson-Crick isomer to be slightly more stable (D(0)=-16.0 kcal mol(-1)) than the Hoogsteen isomer (D(0)=-15.0 kcal mol(-1)). The calculated free energies Delta(f)G(0) of the Watson-Crick and Hoogsteen isomers agree qualitatively with the experimental isomer concentration ratio of 3:1.


Subject(s)
Adenine/analogs & derivatives , Base Composition , Base Pairing , Pyridones/chemistry , Adenine/chemistry , Dimerization , Hydrogen Bonding , Models, Chemical , Models, Molecular , Molecular Conformation , Nucleic Acid Conformation , Photons , Software , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics
8.
J Phys Chem A ; 110(12): 4180-7, 2006 Mar 30.
Article in English | MEDLINE | ID: mdl-16553368

ABSTRACT

Studies on modified DNA oligomers and polymerase reactions have previously demonstrated that canonical nucleobases can exhibit stable and even selective pairing with shape-complementary fluorobenzene nucleotides. Because of the fluorination of the pairing edges, hydrogen bonds are believed to be absent, and the local DNA stability has been attributed to pi-stacking and shape complementarity. Using two-color resonant two-photon ionization and fluorescence emission spectroscopies, we show here that supersonically cooled complexes of the nucleobase analogue 2-pyridone with seven substituted fluorobenzenes (1-fluorobenzene, 1,2- and 1,4-difluorobenzene, 1,3,5- and 1,2,3-trifluorobenzene, 1,2,4,5- and 1,2,3,4-tetrafluorobenzene) are hydrogen-bonded and not pi-stacked. The S1 <--> S0 vibronic spectra show intermolecular vibrational frequencies that are characteristic for doubly hydrogen bonded complexes. The bands shift to the blue with increasing hydrogen-bond strength; the measured spectral blue shifts deltanu are in excellent agreement with the ab initio calculated shifts. The spectral shifts are also linearly correlated with the calculated hydrogen-bond dissociation energies D0, published in a companion paper (Frey, J. A.; Leist, R.; Leutwyler, S. J. Phys. Chem. A 2006, 110, 4188). This correlation allows us to reliably estimate the ground-state dissociation energies as D0 approximately 6 kcal/mol of the 2-pyridone.fluorobenzene complexes from the observed spectral shifts.


Subject(s)
Fluorobenzenes/chemistry , Nucleosides/chemistry , Hydrogen Bonding , Molecular Structure , Pyridones/chemistry , Quantum Theory , Sensitivity and Specificity , Spectrometry, Fluorescence/methods , Stereoisomerism
9.
J Phys Chem A ; 110(12): 4188-95, 2006 Mar 30.
Article in English | MEDLINE | ID: mdl-16553369

ABSTRACT

The hydrogen-bonded complexes of the nucleobase mimic 2-pyridone (2PY) with seven different fluorinated benzenes (1-, 1,2-, 1,4-, 1,2,3-, 1,3,5-, 1,2,3,4-, and 1,2,4,5-fluorobenzene) are important model systems for investigating the relative importance of hydrogen bonding versus pi-stacking interactions in DNA. We have shown by supersonic-jet spectroscopy that these dimers are hydrogen bonded and not pi-stacked at low temperature (Leist, R.; Frey, J. A.; Leutwyler, S. J. Phys. Chem. A 2006, 110, 4180). Their geometries and binding energies D(e) were calculated using the resolution of identity (RI) Møller-Plesset second-order perturbation theory method (RIMP2). The most stable dimers are bound by antiparallel N-H...F-C and C-H...O=C hydrogen bonds. The binding energies are extrapolated to the complete basis set (CBS) limit, , using the aug-cc-pVXZ basis set series. The CBS binding energies range from -D(e,CBS) = 6.4-6.9 kcal/mol and the respective dissociation energies from -D(0,CBS) = 5.9-6.3 kcal/mol. In combination with experiment, the latter represent upper limits to the dissociation energies of the pi-stacked isomers (which are not observed experimentally). The individual C-H...O=C and N-H...F-C contributions to D(e) can be approximately separated. They are nearly equal for 2PY.fluorobenzene; each additional F atom strengthens the C-H...O=C hydrogen bond by approximately 0.5 kcal/mol and weakens the C-F...H-N hydrogen bond by approximately 0.3 kcal/mol. The single H-bond strengths and lengths correlate with the gas-phase acid-base properties of the C-H and C-F groups of the fluorobenzenes.


Subject(s)
Fluorobenzenes/chemistry , Nucleosides/chemistry , Pyridones/chemistry , Quantum Theory , Computer Simulation , Hydrogen Bonding , Models, Chemical , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...