Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 11: 1120179, 2023.
Article in English | MEDLINE | ID: mdl-36815878

ABSTRACT

Introduction: Cell membrane-covered biomimetic nanosystems have allowed the development of homologous nanostructures to bestow nanoparticles with enhanced biointerfacing capabilities. The stability of these structures, however, still represents a challenge for the scientific community. This study is aimed at developing and optimizing cell derived membrane-coated nanostructures upon applying design of experiments (DoE) to improve the therapeutic index by homotypic targeting in cancer cells. Methods: Important physicochemical features of the extracted cell membrane from tumoral cells were assessed by mass spectrometry-based proteomics. PLGA-based nanoparticles encapsulating temozolomide (TMZ NPs) were successfully developed. The coating technology applying the isolated U251 cell membrane (MB) was optimized using a fractional two-level three-factor factorial design. All the formulation runs were systematically characterized regarding their diameter, polydispersity index (PDI), and zeta potential (ZP). Experimental conditions generated by DoE were also subjected to morphological studies using negative-staining transmission electron microscopy (TEM). Its short-time stability was also assessed. MicroRaman and Fourier-Transform Infrared (FTIR) spectroscopies and Confocal microscopy were used as characterization techniques for evaluating the NP-MB nanostructures. Internalization studies were carried out to evaluate the homotypic targeting ability. Results and Discussion: The results have shown that nearly 80% of plasma membrane proteins were retained in the cell membrane vesicles after the isolation process, including key proteins to the homotypic binding. DoE analysis considering acquired TEM images reveals that condition run five should be the best-optimized procedure to produce the biomimetic cell-derived membrane-coated nanostructure (NP-MB). Storage stability for at least two weeks of the biomimetic system is expected once the original characteristics of diameter, PDI, and ZP, were maintained. Raman, FTIR, and confocal characterization results have shown the successful encapsulation of TMZ drug and provided evidence of the effective coating applying the MB. Cell internalization studies corroborate the proteomic data indicating that the optimized NP-MB achieved specific targeting of homotypic tumor cells. The structure should retain the complex biological functions of U251 natural cell membranes while exhibiting physicochemical properties suitable for effective homotypic recognition. Conclusion: Together, these findings provide coverage and a deeper understanding regarding the dynamics around extracted cell membrane and polymeric nanostructures interactions and an in-depth insight into the cell membrane coating technology and the development of optimized biomimetic and bioinspired nanostructured systems.

2.
Ciênc. rural ; 47(7): e20161001, 2017. graf
Article in Portuguese | LILACS | ID: biblio-839867

ABSTRACT

RESUMO: A Osteoartrite (OA) é uma denominação clínica para uma combinação de condições patológicas que envolvem a degeneração progressiva da cartilagem articular e remodelação de osso subcondral. A curcumina, um potente agente anti-inflamatório, têm sido extensivamente estudada, no entanto não oferece boa biodisponibilidade sistêmica. Nanopartículas de ouro (AuNPs) apresentam aplicações potenciais na administração de substâncias terapêuticas aumentando a eficiência do transporte de fármacos. O objetivo deste estudo foi realizar a síntese e caracterização de um sistema conjugando as AuNPs à curcumina e avaliar seu potencial terapêutico em um modelo experimental de OA em camundongos por desestabilização do menisco medial (DMM). As AuNPs foram conjugadas com curcumina e os sistemas foram caracterizados por espectroscopia no UV-VIS, espalhamento de luz dinâmico (DLS) e determinação do potencial zeta. Formou-se 4 grupos de oito animais cada, denominados A, B, C, D que receberam injeção intra-articular de AuNPs, curcumina, AuNP-curcumina e solução fisiológica, respectivamente. Após 7 semanas, a cartilagem da articulação-femoro- tibio-patelar (AFTP) foi avaliada em uma variação de escore de 0 a 24. A conjugação de AuNP-curcumina mostrou boa estabilidade e aplicação terapêutica, mas não diferiu significativamente (P>0,05) dos grupos A e B, no entanto, mostrou menor valor de escore e significância (P<0,001) em relação ao grupo controle. Os resultados deste trabalho mostram a importância do desenvolvimento de novos nanofármacos. Neste caso a conjugação de AuNPs com a curcumina permitiu a obtenção de um nanofármaco com sugestivo potencial para aplicação no tratamento da OA.


ABSTRACT: Osteoarthritis (OA) is the clinical term for a combination of pathological conditions that involve the progressive degeneration of articular cartilage and subchondral bone remodelling. Curcumin, a potent anti-inflammatory agent, has been extensively studied; however, it does not provide good systemic bioavailability. Gold nanoparticles (AuNPs) have potential applications in the administration of therapeutic substances in order to increase the transport efficiency of drugs. The objectives of this study were to explore the synthesis and characterization of a system combining AuNPs with curcumin and evaluate its therapeutic potential in an experimental model of OA in mice by the destabilization of the medial meniscus (DMM). The AuNPs were conjugated with curcumin and the systems were characterized by UV-VIS spectroscopy, dynamic light scattering (DLS), and zeta potential. Four groups of eight animals each were formed and labelled A, B, C, and D, which received intra-articular injections of AuNPs, curcumin, AuNP-curcumin, and physiologic solution, respectively. After seven weeks, the cartilage of the stifle joint (SJ) was rated on a scale ranging from 0 to 24. Combination of AuNP-curcumin demonstrated good stability and therapeutic applications, but it did not differ significantly (P>0.05) from groups A and B. However, the control group had a significantly lower score (P<0.001). Results of this study demonstrated the importance of developing new nanodrugs. In this case, the combination of AuNPs and curcumin yielded the nanodrug effects suggestive of a potential for application in the treatment of OA.

SELECTION OF CITATIONS
SEARCH DETAIL
...